diff options
| author | epapoutsellis <epapoutsellis@gmail.com> | 2019-04-15 17:27:51 +0100 | 
|---|---|---|
| committer | epapoutsellis <epapoutsellis@gmail.com> | 2019-04-15 17:27:51 +0100 | 
| commit | c0bde2086da1b1160c956fafbbb666c256d3e4b9 (patch) | |
| tree | 209fdc78a6f2b0b005d3c788cc99f1caa137778d /Wrappers/Python | |
| parent | 85171b24b4bddf18b82a4fd5fd6e2bfe16f0afbf (diff) | |
| download | framework-c0bde2086da1b1160c956fafbbb666c256d3e4b9.tar.gz framework-c0bde2086da1b1160c956fafbbb666c256d3e4b9.tar.bz2 framework-c0bde2086da1b1160c956fafbbb666c256d3e4b9.tar.xz framework-c0bde2086da1b1160c956fafbbb666c256d3e4b9.zip | |
 fixing other method pf pdhg denoising
Diffstat (limited to 'Wrappers/Python')
7 files changed, 176 insertions, 195 deletions
| diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py index 5e92767..d1b5351 100644 --- a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py +++ b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py @@ -158,14 +158,24 @@ def PDHG_old(f, g, operator, tau = None, sigma = None, opt = None, **kwargs):              x_old -= tau*operator.adjoint(y)              x = g.proximal(x_old, tau) -            xbar.fill(x) -            xbar -= x_old +            x.subtract(x_old, out=xbar)              xbar *= theta              xbar += x -             +                                                              x_old.fill(x) -            y_old.fill(y)             +            y_old.fill(y)        +             +             +#            if i%100==0: +#                 +#                p1 = f(operator.direct(x)) + g(x) +#                d1 = - ( f.convex_conjugate(y) + g(-1*operator.adjoint(y)) ) +#                primal.append(p1) +#                dual.append(d1) +#                pdgap.append(p1-d1)       +#                print(p1, d1, p1-d1) +                      else:              operator.direct(xbar, out = y_tmp)              @@ -186,6 +196,15 @@ def PDHG_old(f, g, operator, tau = None, sigma = None, opt = None, **kwargs):              x_old.fill(x)              y_old.fill(y) +#            if i%100==0: +#                 +#                p1 = f(operator.direct(x)) + g(x) +#                d1 = - ( f.convex_conjugate(y) + g(-1*operator.adjoint(y)) ) +#                primal.append(p1) +#                dual.append(d1) +#                pdgap.append(p1-d1)       +#                print(p1, d1, p1-d1) +                  t_end = time.time()         diff --git a/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py b/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py index 38bc458..70511bb 100644 --- a/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py +++ b/Wrappers/Python/ccpi/optimisation/functions/FunctionOperatorComposition.py @@ -54,15 +54,20 @@ class FunctionOperatorComposition(Function):      def proximal(self, x, tau, out=None): -        '''proximal does not take into account the Operator''' -         -        return self.function.proximal(x, tau, out=out) +        '''proximal does not take into account the Operator'''                 +        if out is None: +            return self.function.proximal(x, tau) +        else: +            self.function.proximal(x, tau, out=out) +                  def proximal_conjugate(self, x, tau, out=None):              ''' proximal conjugate does not take into account the Operator''' -         -        return self.function.proximal_conjugate(x, tau, out=out)  +        if out is None: +            return self.function.proximal_conjugate(x, tau) +        else: +            self.function.proximal_conjugate(x, tau, out=out)       def gradient(self, x, out=None): diff --git a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py index 2d0a00a..2ac11ee 100644 --- a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py +++ b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py @@ -34,6 +34,7 @@ class L2NormSquared(Function):          super(L2NormSquared, self).__init__()          self.b = kwargs.get('b',None)   +        self.L = 2      def __call__(self, x): @@ -247,7 +248,38 @@ if __name__ == '__main__':      print(res_out.as_array())         numpy.testing.assert_array_almost_equal(res_no_out.as_array(), \ -                                            res_out.as_array(), decimal=4)         +                                            res_out.as_array(), decimal=4)   +     +     +     +    ig1 = ImageGeometry(2,3) +     +    tau = 0.1 +     +    u = ig1.allocate('random_int') +    b = ig1.allocate('random_int') +     +    scalar = 0.5 +    f_scaled = scalar * L2NormSquared(b=b) +    f_noscaled = L2NormSquared(b=b) +     +     +    res1 = f_scaled.proximal(u, tau) +    res2 = f_noscaled.proximal(u, tau*scalar) +     +#    res2 = (u + tau*b)/(1+tau) +     +    numpy.testing.assert_array_almost_equal(res1.as_array(), \ +                                            res2.as_array(), decimal=4) +                                             +                                             +     +     +     + + + +       diff --git a/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py b/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py index 3541bc2..7e6b6e7 100755 --- a/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py +++ b/Wrappers/Python/ccpi/optimisation/functions/MixedL21Norm.py @@ -54,9 +54,8 @@ class MixedL21Norm(Function):          else: -            #tmp = [ el**2 for el in x.containers ] -            #res = sum(tmp).sqrt().sum() -            res = x.pnorm() +            tmp = [ el**2 for el in x.containers ] +            res = sum(tmp).sqrt().sum()          return res @@ -109,7 +108,7 @@ class MixedL21Norm(Function):  #                x.divide(sum([el*el for el in x.containers]).sqrt().maximum(1.0), out=out)                  #TODO this is slow, why ??? -#                 x.divide(x.norm().maximum(1.0), out=out) +#                 x.divide(x.pnorm().maximum(1.0), out=out)      def __rmul__(self, scalar): diff --git a/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py b/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py index cb85249..7caeab2 100755 --- a/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py +++ b/Wrappers/Python/ccpi/optimisation/functions/ScaledFunction.py @@ -37,11 +37,14 @@ class ScaledFunction(object):      '''
      def __init__(self, function, scalar):
          super(ScaledFunction, self).__init__()
 -        self.L = None
 +
          if not isinstance (scalar, Number):
              raise TypeError('expected scalar: got {}'.format(type(scalar)))
          self.scalar = scalar
          self.function = function
 +        
 +        if self.function.L is not None:        
 +            self.L = self.scalar * self.function.L         
      def __call__(self,x, out=None):
          '''Evaluates the function at x '''
 @@ -64,7 +67,7 @@ class ScaledFunction(object):          if out is None:
              return self.function.proximal(x, tau*self.scalar)     
          else:
 -            out.fill( self.function.proximal(x, tau*self.scalar) )
 +            self.function.proximal(x, tau*self.scalar, out = out)
      def proximal_conjugate(self, x, tau, out = None):
          '''This returns the proximal operator for the function at x, tau
 diff --git a/Wrappers/Python/wip/fista_TV_denoising.py b/Wrappers/Python/wip/fista_TV_denoising.py new file mode 100644 index 0000000..a9712fc --- /dev/null +++ b/Wrappers/Python/wip/fista_TV_denoising.py @@ -0,0 +1,72 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Feb 22 14:53:03 2019 + +@author: evangelos +""" + +from ccpi.framework import ImageData, ImageGeometry, BlockDataContainer + +import numpy as np                            +import matplotlib.pyplot as plt + +from ccpi.optimisation.algorithms import PDHG, PDHG_old, FISTA + +from ccpi.optimisation.operators import BlockOperator, Identity, Gradient +from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \ +                      MixedL21Norm, FunctionOperatorComposition, BlockFunction, ScaledFunction +                       +from ccpi.optimisation.algs import FISTA                       + +from skimage.util import random_noise + +from timeit import default_timer as timer +def dt(steps): +    return steps[-1] - steps[-2] + +# Create phantom for TV denoising + +N = 100 + +data = np.zeros((N,N)) +data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 +data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 + +ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N) +ag = ig + +# Create noisy data. Add Gaussian noise +n1 = random_noise(data, mode = 'gaussian', mean=0, var = 0.05, seed=10) +noisy_data = ImageData(n1) + + +plt.imshow(noisy_data.as_array()) +plt.title('Noisy data') +plt.show() + +# Regularisation Parameter +alpha = 2 + +operator = Gradient(ig) +g = alpha * MixedL21Norm() +f = 0.5 * L2NormSquared(b = noisy_data) +     +x_init = ig.allocate() +opt = {'niter':2000} + + +x = FISTA(x_init, f, g, opt) + +#fista = FISTA() +#fista.set_up(x_init, f, g, opt ) +#fista.max_iteration = 10 +# +#fista.run(2000) +#plt.figure(figsize=(15,15)) +#plt.subplot(3,1,1) +#plt.imshow(fista.get_output().as_array()) +#plt.title('no memopt class') + + + diff --git a/Wrappers/Python/wip/pdhg_TV_denoising.py b/Wrappers/Python/wip/pdhg_TV_denoising.py index e142d94..a5cd1bf 100755 --- a/Wrappers/Python/wip/pdhg_TV_denoising.py +++ b/Wrappers/Python/wip/pdhg_TV_denoising.py @@ -23,11 +23,9 @@ from timeit import default_timer as timer  def dt(steps):      return steps[-1] - steps[-2] -#%% -  # Create phantom for TV denoising -N = 500 +N = 100  data = np.zeros((N,N))  data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 @@ -40,16 +38,16 @@ ag = ig  n1 = random_noise(data, mode = 'gaussian', mean=0, var = 0.05, seed=10)  noisy_data = ImageData(n1) +  plt.imshow(noisy_data.as_array()) +plt.title('Noisy data')  plt.show() -#%% -  # Regularisation Parameter  alpha = 2  #method = input("Enter structure of PDHG (0=Composite or 1=NotComposite): ") -method = '0' +method = '1'  if method == '0': @@ -74,12 +72,9 @@ else:      #         No Composite #      ###########################################################################      operator = Gradient(ig) -    f = alpha * FunctionOperatorComposition(operator, MixedL21Norm()) -    g = L2NormSquared(b = noisy_data) -     -    ########################################################################### -#%% -     +    f = alpha * MixedL21Norm() +    g = 0.5 * L2NormSquared(b = noisy_data) +          # Compute operator Norm  normK = operator.norm() @@ -94,180 +89,36 @@ t1 = timer()  res, time, primal, dual, pdgap = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)   t2 = timer() +print(" Run memopt")  t3 = timer()  res1, time1, primal1, dual1, pdgap1 = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt1)   t4 = timer() -# -print ("No memopt in {}s, memopt in  {}s ".format(t2-t1, t4 -t3)) - -#     -#%% -#pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma) -#pdhg.max_iteration = 2000 -#pdhg.update_objective_interval = 100 -## -#pdhgo = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True) -#pdhgo.max_iteration = 2000 -#pdhgo.update_objective_interval = 100 -## -#steps = [timer()] -#pdhgo.run(2000) -#steps.append(timer()) -#t1 = dt(steps) -## -#pdhg.run(2000) -#steps.append(timer()) -#t2 = dt(steps) -# -#print ("Time difference {}s {}s {}s Speedup {:.2f}".format(t1,t2,t2-t1, t2/t1)) -#res = pdhg.get_output() -#res1 = pdhgo.get_output()  #%% -#plt.figure(figsize=(15,15)) -#plt.subplot(3,1,1) -#plt.imshow(res.as_array()) -#plt.title('no memopt') -#plt.colorbar() -#plt.subplot(3,1,2) -#plt.imshow(res1.as_array()) -#plt.title('memopt') -#plt.colorbar() -#plt.subplot(3,1,3) -#plt.imshow((res1 - res).abs().as_array()) -#plt.title('diff') -#plt.colorbar() -#plt.show() - - -#plt.figure(figsize=(15,15)) -#plt.subplot(3,1,1) -#plt.imshow(pdhg.get_output().as_array()) -#plt.title('no memopt class') -#plt.colorbar() -#plt.subplot(3,1,2) -#plt.imshow(res.as_array()) -#plt.title('no memopt') -#plt.colorbar() -#plt.subplot(3,1,3) -#plt.imshow((pdhg.get_output() - res).abs().as_array()) -#plt.title('diff') -#plt.colorbar() -#plt.show() -#     -#     -# -#plt.figure(figsize=(15,15)) -#plt.subplot(3,1,1) -#plt.imshow(pdhgo.get_output().as_array()) -#plt.title('memopt class') -#plt.colorbar() -#plt.subplot(3,1,2) -#plt.imshow(res1.as_array()) -#plt.title('no memopt') -#plt.colorbar() -#plt.subplot(3,1,3) -#plt.imshow((pdhgo.get_output() - res1).abs().as_array()) -#plt.title('diff') -#plt.colorbar() -#plt.show() -     - -     +plt.figure(figsize=(15,15)) +plt.subplot(3,1,1) +plt.imshow(res.as_array()) +plt.title('no memopt') +plt.colorbar() +plt.subplot(3,1,2) +plt.imshow(res1.as_array()) +plt.title('memopt') +plt.colorbar() +plt.subplot(3,1,3) +plt.imshow((res1 - res).abs().as_array()) +plt.title('diff') +plt.colorbar() +plt.show() +#  +plt.plot(np.linspace(0,N,N), res1.as_array()[int(N/2),:], label = 'memopt') +plt.plot(np.linspace(0,N,N), res.as_array()[int(N/2),:], label = 'no memopt') +plt.legend() +plt.show() -     -#    print ("Time difference {}s {}s {}s Speedup {:.2f}".format(t1,t2,t2-t1, t2/t1)) -#    res = pdhg.get_output() -#    res1 = pdhgo.get_output() -#     -#    diff = (res-res1) -#    print ("diff norm {} max {}".format(diff.norm(), diff.abs().as_array().max())) -#    print ("Sum ( abs(diff) )  {}".format(diff.abs().sum())) -#     -#     -#    plt.figure(figsize=(5,5)) -#    plt.subplot(1,3,1) -#    plt.imshow(res.as_array()) -#    plt.colorbar() -#    #plt.show() -#      -#    #plt.figure(figsize=(5,5)) -#    plt.subplot(1,3,2) -#    plt.imshow(res1.as_array()) -#    plt.colorbar() -     -#plt.show() +print ("Time: No memopt in {}s, \n Time: Memopt in  {}s ".format(t2-t1, t4 -t3)) +diff = (res1 - res).abs().as_array().max() +print(" Max of abs difference is {}".format(diff)) -#======= -## opt = {'niter':2000, 'memopt': True} -# -## res, time, primal, dual, pdgap = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)  -#  -#>>>>>>> origin/pdhg_fix -# -# -## opt = {'niter':2000, 'memopt': False} -## res1, time1, primal1, dual1, pdgap1 = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)  -# -## plt.figure(figsize=(5,5)) -## plt.subplot(1,3,1) -## plt.imshow(res.as_array()) -## plt.title('memopt') -## plt.colorbar() -## plt.subplot(1,3,2) -## plt.imshow(res1.as_array()) -## plt.title('no memopt') -## plt.colorbar() -## plt.subplot(1,3,3) -## plt.imshow((res1 - res).abs().as_array()) -## plt.title('diff') -## plt.colorbar() -## plt.show() -#pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma) -#pdhg.max_iteration = 2000 -#pdhg.update_objective_interval = 100 -# -# -#pdhgo = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True) -#pdhgo.max_iteration = 2000 -#pdhgo.update_objective_interval = 100 -# -#steps = [timer()] -#pdhgo.run(200) -#steps.append(timer()) -#t1 = dt(steps) -# -#pdhg.run(200) -#steps.append(timer()) -#t2 = dt(steps) -# -#print ("Time difference {} {} {}".format(t1,t2,t2-t1)) -#sol = pdhg.get_output().as_array() -##sol = result.as_array() -## -#fig = plt.figure() -#plt.subplot(1,3,1) -#plt.imshow(noisy_data.as_array()) -#plt.colorbar() -#plt.subplot(1,3,2) -#plt.imshow(sol) -#plt.colorbar() -#plt.subplot(1,3,3) -#plt.imshow(pdhgo.get_output().as_array()) -#plt.colorbar() -# -#plt.show() -### -## -#### -##plt.plot(np.linspace(0,N,N), data[int(N/2),:], label = 'GTruth') -##plt.plot(np.linspace(0,N,N), sol[int(N/2),:], label = 'Recon') -##plt.legend() -##plt.show() -# -# -##%% -## | 
