summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
authorepapoutsellis <epapoutsellis@gmail.com>2019-04-25 11:23:53 +0100
committerepapoutsellis <epapoutsellis@gmail.com>2019-04-25 11:23:53 +0100
commitb36285116596d62aefc878395a142b1541bdd1e8 (patch)
treec92fc206f8eec4217da81f4d50a855a7e5ed098e /Wrappers/Python
parent3be687f3d78b2edcbfec19bb24c3cd0493e7259a (diff)
parentd8cbae5c0ed33ea0c30f1e0f3518e2e97c0a86ba (diff)
downloadframework-b36285116596d62aefc878395a142b1541bdd1e8.tar.gz
framework-b36285116596d62aefc878395a142b1541bdd1e8.tar.bz2
framework-b36285116596d62aefc878395a142b1541bdd1e8.tar.xz
framework-b36285116596d62aefc878395a142b1541bdd1e8.zip
old demos
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/wip/Demos/sinogram_demo_tomography2D.npybin60128 -> 0 bytes
-rw-r--r--Wrappers/Python/wip/Demos/untitled4.py87
-rwxr-xr-xWrappers/Python/wip/pdhg_TV_denoising.py4
-rw-r--r--Wrappers/Python/wip/pdhg_TV_tomography2D.py4
-rw-r--r--Wrappers/Python/wip/pdhg_tv_denoising_poisson.py4
5 files changed, 6 insertions, 93 deletions
diff --git a/Wrappers/Python/wip/Demos/sinogram_demo_tomography2D.npy b/Wrappers/Python/wip/Demos/sinogram_demo_tomography2D.npy
deleted file mode 100644
index f37fd4b..0000000
--- a/Wrappers/Python/wip/Demos/sinogram_demo_tomography2D.npy
+++ /dev/null
Binary files differ
diff --git a/Wrappers/Python/wip/Demos/untitled4.py b/Wrappers/Python/wip/Demos/untitled4.py
deleted file mode 100644
index 0cacbd7..0000000
--- a/Wrappers/Python/wip/Demos/untitled4.py
+++ /dev/null
@@ -1,87 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Wed Apr 24 14:21:08 2019
-
-@author: evangelos
-"""
-
-from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, AcquisitionData
-import numpy
-import numpy as np
-import matplotlib.pyplot as plt
-
-from ccpi.optimisation.algorithms import PDHG, PDHG_old
-
-from ccpi.optimisation.operators import BlockOperator, Gradient
-from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
- MixedL21Norm, BlockFunction
-
-from ccpi.astra.ops import AstraProjectorSimple, AstraProjector3DSimple
-from skimage.util import random_noise
-from timeit import default_timer as timer
-
-#N = 75
-#x = np.zeros((N,N))
-#x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
-#x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
-
-#data = ImageData(x)
-
-N = 75
-#x = np.zeros((N,N))
-
-vert = 4
-ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N, voxel_num_z=vert)
-data = ig.allocate()
-Phantom = data
-# Populate image data by looping over and filling slices
-i = 0
-while i < vert:
- if vert > 1:
- x = Phantom.subset(vertical=i).array
- else:
- x = Phantom.array
- x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
- x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 0.98
- if vert > 1 :
- Phantom.fill(x, vertical=i)
- i += 1
-
-angles_num = 100
-det_w = 1.0
-det_num = N
-
-angles = np.linspace(0,np.pi,angles_num,endpoint=False,dtype=np.float32)*\
- 180/np.pi
-
-# Inputs: Geometry, 2D or 3D, angles, horz detector pixel count,
-# horz detector pixel size, vert detector pixel count,
-# vert detector pixel size.
-ag = AcquisitionGeometry('parallel',
- '3D',
- angles,
- N,
- det_w,
- vert,
- det_w)
-
-sino = numpy.load("sinogram_demo_tomography2D.npy", mmap_mode='r')
-plt.imshow(sino)
-plt.title('Sinogram CCPi')
-plt.colorbar()
-plt.show()
-
-#%%
-Aop = AstraProjector3DSimple(ig, ag)
-sin = Aop.direct(data)
-
-plt.imshow(sin.as_array())
-
-plt.title('Sinogram Astra')
-plt.colorbar()
-plt.show()
-
-
-
-#%% \ No newline at end of file
diff --git a/Wrappers/Python/wip/pdhg_TV_denoising.py b/Wrappers/Python/wip/pdhg_TV_denoising.py
index a8e25d2..b16e8f9 100755
--- a/Wrappers/Python/wip/pdhg_TV_denoising.py
+++ b/Wrappers/Python/wip/pdhg_TV_denoising.py
@@ -99,8 +99,8 @@ else:
tau = 1/(sigma*normK**2)
-opt = {'niter':2000}
-opt1 = {'niter':2000, 'memopt': True}
+opt = {'niter':5000}
+opt1 = {'niter':5000, 'memopt': True}
t1 = timer()
res, time, primal, dual, pdgap = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)
diff --git a/Wrappers/Python/wip/pdhg_TV_tomography2D.py b/Wrappers/Python/wip/pdhg_TV_tomography2D.py
index 0e167e3..cd91409 100644
--- a/Wrappers/Python/wip/pdhg_TV_tomography2D.py
+++ b/Wrappers/Python/wip/pdhg_TV_tomography2D.py
@@ -114,8 +114,8 @@ else:
# Primal & dual stepsizes
-opt = {'niter':2000}
-opt1 = {'niter':2000, 'memopt': True}
+opt = {'niter':200}
+opt1 = {'niter':200, 'memopt': True}
t1 = timer()
res, time, primal, dual, pdgap = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)
diff --git a/Wrappers/Python/wip/pdhg_tv_denoising_poisson.py b/Wrappers/Python/wip/pdhg_tv_denoising_poisson.py
index 70bb4cc..cb37598 100644
--- a/Wrappers/Python/wip/pdhg_tv_denoising_poisson.py
+++ b/Wrappers/Python/wip/pdhg_tv_denoising_poisson.py
@@ -81,8 +81,8 @@ normK = operator.norm()
sigma = 1
tau = 1/(sigma*normK**2)
-opt = {'niter':5000}
-opt1 = {'niter':5000, 'memopt': True}
+opt = {'niter':2000}
+opt1 = {'niter':2000, 'memopt': True}
t1 = timer()
res, time, primal, dual, pdgap = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)