summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
authorepapoutsellis <epapoutsellis@gmail.com>2019-04-24 10:49:41 +0100
committerepapoutsellis <epapoutsellis@gmail.com>2019-04-24 10:49:41 +0100
commitb0a2d779602df9f8abfcb68083f9de0df43ed5b0 (patch)
treeafdc34e94afe3ff41d9130feebc337aa759d85b3 /Wrappers/Python
parentf12e27ba088462858f35315193cf6bf624325d1e (diff)
downloadframework-b0a2d779602df9f8abfcb68083f9de0df43ed5b0.tar.gz
framework-b0a2d779602df9f8abfcb68083f9de0df43ed5b0.tar.bz2
framework-b0a2d779602df9f8abfcb68083f9de0df43ed5b0.tar.xz
framework-b0a2d779602df9f8abfcb68083f9de0df43ed5b0.zip
fix TGV example
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py7
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py29
-rw-r--r--Wrappers/Python/wip/pdhg_TGV_denoising.py184
-rw-r--r--Wrappers/Python/wip/pdhg_TV_tomography2D.py6
4 files changed, 130 insertions, 96 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
index 7631e29..110f998 100644
--- a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
@@ -104,6 +104,7 @@ class PDHG(Algorithm):
self.y_old = self.y
def update_objective(self):
+
p1 = self.f(self.operator.direct(self.x)) + self.g(self.x)
d1 = -(self.f.convex_conjugate(self.y) + self.g.convex_conjugate(-1*self.operator.adjoint(self.y)))
@@ -166,7 +167,7 @@ def PDHG_old(f, g, operator, tau = None, sigma = None, opt = None, **kwargs):
x_old.fill(x)
y_old.fill(y)
- if i%10==0:
+ if i%50==0:
p1 = f(operator.direct(x)) + g(x)
d1 = - ( f.convex_conjugate(y) + g.convex_conjugate(-1*operator.adjoint(y)) )
@@ -194,8 +195,8 @@ def PDHG_old(f, g, operator, tau = None, sigma = None, opt = None, **kwargs):
x_old.fill(x)
y_old.fill(y)
-
- if i%10==0:
+
+ if i%50==0:
p1 = f(operator.direct(x)) + g(x)
d1 = - ( f.convex_conjugate(y) + g.convex_conjugate(-1*operator.adjoint(y)) )
diff --git a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
index 3c15fa1..243809b 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
@@ -69,9 +69,8 @@ class SymmetrizedGradient(Gradient):
self.FD.direction = i
self.FD.adjoint(x.get_item(j), out=out[ind])
ind+=1
- out1 = [out[i] for i in self.order_ind]
- res = [0.5 * sum(x) for x in zip(out, out1)]
- out.fill(BlockDataContainer(*res))
+ out1 = BlockDataContainer(*[out[i] for i in self.order_ind])
+ out.fill( 0.5 * (out + out1) )
def adjoint(self, x, out=None):
@@ -102,10 +101,11 @@ class SymmetrizedGradient(Gradient):
self.FD.direct(x[i], out=tmp[j])
i+=1
tmp1+=tmp[j]
- out[k].fill(tmp1)
+ out[k].fill(tmp1)
+# tmp = self.adjoint(x)
+# out.fill(tmp)
-
-
+
def domain_geometry(self):
return self.gm_domain
@@ -114,12 +114,12 @@ class SymmetrizedGradient(Gradient):
def norm(self):
- #TODO need dot method for BlockDataContainer
- return numpy.sqrt(4*self.gm_domain.shape[0])
+# TODO need dot method for BlockDataContainer
+# return numpy.sqrt(4*self.gm_domain.shape[0])
-# x0 = self.gm_domain.allocate('random_int')
-# self.s1, sall, svec = LinearOperator.PowerMethod(self, 10, x0)
-# return self.s1
+# x0 = self.gm_domain.allocate('random')
+ self.s1, sall, svec = LinearOperator.PowerMethod(self, 50)
+ return self.s1
@@ -226,6 +226,13 @@ if __name__ == '__main__':
print(LHS_out, RHS_out)
+ out = E1.range_geometry().allocate()
+ E1.direct(u1, out=out)
+ E1.adjoint(out, out=out1)
+
+ print(E1.norm())
+ print(E2.norm())
+
diff --git a/Wrappers/Python/wip/pdhg_TGV_denoising.py b/Wrappers/Python/wip/pdhg_TGV_denoising.py
index 0b6e594..1c570cb 100644
--- a/Wrappers/Python/wip/pdhg_TGV_denoising.py
+++ b/Wrappers/Python/wip/pdhg_TGV_denoising.py
@@ -105,100 +105,126 @@ normK = operator.norm()
sigma = 1
tau = 1/(sigma*normK**2)
##
-opt = {'niter':2000}
-opt1 = {'niter':2000, 'memopt': True}
+opt = {'niter':500}
+opt1 = {'niter':500, 'memopt': True}
#
t1 = timer()
res, time, primal, dual, pdgap = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)
t2 = timer()
#
+t3 = timer()
+res1, time1, primal1, dual1, pdgap1 = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt1)
+t4 = timer()
+#
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
plt.imshow(res[0].as_array())
+plt.title('no memopt')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(res1[0].as_array())
+plt.title('memopt')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow((res1[0] - res[0]).abs().as_array())
+plt.title('diff')
+plt.colorbar()
plt.show()
+print("NoMemopt/Memopt is {}/{}".format(t2-t1, t4-t3))
+
+
+######
+
+#%%
-#t3 = timer()
-#res1, time1, primal1, dual1, pdgap1 = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt1)
-#t4 = timer()
+#def update_plot(it_update, objective, x):
+#
+## sol = pdhg.get_output()
+# plt.figure()
+# plt.imshow(x[0].as_array())
+# plt.show()
+#
+#
+##def stop_criterion(x,)
#
-#plt.figure(figsize=(15,15))
-#plt.subplot(3,1,1)
-#plt.imshow(res[0].as_array())
-#plt.title('no memopt')
-#plt.colorbar()
-#plt.subplot(3,1,2)
-#plt.imshow(res1[0].as_array())
-#plt.title('memopt')
-#plt.colorbar()
-#plt.subplot(3,1,3)
-#plt.imshow((res1[0] - res[0]).abs().as_array())
-#plt.title('diff')
-#plt.colorbar()
-#plt.show()
+#pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+#pdhg.max_iteration = 2000
+#pdhg.update_objective_interval = 100
#
-#print("NoMemopt/Memopt is {}/{}".format(t2-t1, t4-t3))
-
+#pdhg.run(4000, verbose=False, callback=update_plot)
-#%% Check with CVX solution
-from ccpi.optimisation.operators import SparseFiniteDiff
+#%%
-try:
- from cvxpy import *
- cvx_not_installable = True
-except ImportError:
- cvx_not_installable = False
-if cvx_not_installable:
-
- u = Variable(ig.shape)
- w1 = Variable((N, N))
- w2 = Variable((N, N))
-
- # create TGV regulariser
- DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
- DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
-
- regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u) - vec(w1), \
- DY.matrix() * vec(u) - vec(w2)]), 2, axis = 0)) + \
- beta * sum(norm(vstack([ DX.matrix().transpose() * vec(w1), DY.matrix().transpose() * vec(w2), \
- 0.5 * ( DX.matrix().transpose() * vec(w2) + DY.matrix().transpose() * vec(w1) ), \
- 0.5 * ( DX.matrix().transpose() * vec(w2) + DY.matrix().transpose() * vec(w1) ) ]), 2, axis = 0 ) )
-
- constraints = []
- fidelity = 0.5 * sum_squares(u - noisy_data.as_array())
- solver = MOSEK
- obj = Minimize( regulariser + fidelity)
- prob = Problem(obj)
- result = prob.solve(verbose = True, solver = solver)
-
- diff_cvx = numpy.abs( res[0].as_array() - u.value )
-
- # Show result
- plt.figure(figsize=(15,15))
- plt.subplot(3,1,1)
- plt.imshow(res[0].as_array())
- plt.title('PDHG solution')
- plt.colorbar()
-
- plt.subplot(3,1,2)
- plt.imshow(u.value)
- plt.title('CVX solution')
- plt.colorbar()
-
- plt.subplot(3,1,3)
- plt.imshow(diff_cvx)
- plt.title('Difference')
- plt.colorbar()
- plt.show()
-
- plt.plot(np.linspace(0,N,N), res[0].as_array()[int(N/2),:], label = 'PDHG')
- plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
- plt.legend()
-
- print('Primal Objective (CVX) {} '.format(obj.value))
- print('Primal Objective (PDHG) {} '.format(primal[-1]))
- print('Min/Max of absolute difference {}/{}'.format(diff_cvx.min(), diff_cvx.max()))
-
+
+
+
+
+
+#%% Check with CVX solution
+
+#from ccpi.optimisation.operators import SparseFiniteDiff
+#
+#try:
+# from cvxpy import *
+# cvx_not_installable = True
+#except ImportError:
+# cvx_not_installable = False
+#
+#if cvx_not_installable:
+#
+# u = Variable(ig.shape)
+# w1 = Variable((N, N))
+# w2 = Variable((N, N))
+#
+# # create TGV regulariser
+# DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+# DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+#
+# regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u) - vec(w1), \
+# DY.matrix() * vec(u) - vec(w2)]), 2, axis = 0)) + \
+# beta * sum(norm(vstack([ DX.matrix().transpose() * vec(w1), DY.matrix().transpose() * vec(w2), \
+# 0.5 * ( DX.matrix().transpose() * vec(w2) + DY.matrix().transpose() * vec(w1) ), \
+# 0.5 * ( DX.matrix().transpose() * vec(w2) + DY.matrix().transpose() * vec(w1) ) ]), 2, axis = 0 ) )
+#
+# constraints = []
+# fidelity = 0.5 * sum_squares(u - noisy_data.as_array())
+# solver = MOSEK
+#
+# obj = Minimize( regulariser + fidelity)
+# prob = Problem(obj)
+# result = prob.solve(verbose = True, solver = solver)
+#
+# diff_cvx = numpy.abs( res[0].as_array() - u.value )
+#
+# # Show result
+# plt.figure(figsize=(15,15))
+# plt.subplot(3,1,1)
+# plt.imshow(res[0].as_array())
+# plt.title('PDHG solution')
+# plt.colorbar()
+#
+# plt.subplot(3,1,2)
+# plt.imshow(u.value)
+# plt.title('CVX solution')
+# plt.colorbar()
+#
+# plt.subplot(3,1,3)
+# plt.imshow(diff_cvx)
+# plt.title('Difference')
+# plt.colorbar()
+# plt.show()
+#
+# plt.plot(np.linspace(0,N,N), res[0].as_array()[int(N/2),:], label = 'PDHG')
+# plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
+# plt.legend()
+#
+# print('Primal Objective (CVX) {} '.format(obj.value))
+# print('Primal Objective (PDHG) {} '.format(primal[-1]))
+# print('Min/Max of absolute difference {}/{}'.format(diff_cvx.min(), diff_cvx.max()))
+#
diff --git a/Wrappers/Python/wip/pdhg_TV_tomography2D.py b/Wrappers/Python/wip/pdhg_TV_tomography2D.py
index 2713cfd..91c48c7 100644
--- a/Wrappers/Python/wip/pdhg_TV_tomography2D.py
+++ b/Wrappers/Python/wip/pdhg_TV_tomography2D.py
@@ -8,16 +8,16 @@ Created on Fri Feb 22 14:53:03 2019
@author: evangelos
"""
-from ccpi.framework import ImageData, ImageGeometry, BlockDataContainer, AcquisitionGeometry, AcquisitionData
+from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, AcquisitionData
import numpy as np
import matplotlib.pyplot as plt
from ccpi.optimisation.algorithms import PDHG, PDHG_old
-from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
+from ccpi.optimisation.operators import BlockOperator, Gradient
from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
- MixedL21Norm, BlockFunction, ScaledFunction
+ MixedL21Norm, BlockFunction
from ccpi.astra.ops import AstraProjectorSimple
from skimage.util import random_noise