summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
authorVaggelis <epapoutsellis@gmail.com>2019-04-01 19:53:12 +0100
committerVaggelis <epapoutsellis@gmail.com>2019-04-01 19:53:12 +0100
commitab212446e6e4bf450b38375c3650c643b9c4dffb (patch)
tree3a5af883a55961a69f279c0ca3b7fa566092d3bb /Wrappers/Python
parentf620d650de2c5e6ac16b799913dfcfd6f101ed35 (diff)
parent47e743cf3ff3474b516d492b0c5b3d47d4b73848 (diff)
downloadframework-ab212446e6e4bf450b38375c3650c643b9c4dffb.tar.gz
framework-ab212446e6e4bf450b38375c3650c643b9c4dffb.tar.bz2
framework-ab212446e6e4bf450b38375c3650c643b9c4dffb.tar.xz
framework-ab212446e6e4bf450b38375c3650c643b9c4dffb.zip
Merge branch 'composite_operator_datacontainer' of https://github.com/vais-ral/CCPi-Framework into composite_operator_datacontainer
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/build/lib/ccpi/__init__.py18
-rw-r--r--Wrappers/Python/build/lib/ccpi/framework/BlockDataContainer.py332
-rw-r--r--Wrappers/Python/build/lib/ccpi/framework/BlockGeometry.py34
-rw-r--r--Wrappers/Python/build/lib/ccpi/framework/__init__.py25
-rw-r--r--Wrappers/Python/build/lib/ccpi/framework/framework.py1493
-rw-r--r--Wrappers/Python/build/lib/ccpi/io/__init__.py18
-rw-r--r--Wrappers/Python/build/lib/ccpi/io/reader.py500
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/__init__.py18
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py158
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/CGLS.py87
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FBPD.py86
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FISTA.py121
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/GradientDescent.py76
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py82
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algorithms/__init__.py30
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/algs.py319
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/funcs.py272
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/BlockFunction.py70
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/Function.py69
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/FunctionOperatorComposition.py65
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/IndicatorBox.py65
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/L1Norm.py92
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py222
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/MixedL21Norm.py136
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/Norm2Sq.py98
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/ScaledFunction.py91
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/ZeroFun.py60
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/__init__.py13
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/functions.py312
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/functions/mixed_L12Norm.py56
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockOperator.py223
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockScaledOperator.py67
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/FiniteDifferenceOperator.py322
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py78
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/IdentityOperator.py42
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/LinearOperator.py22
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/Operator.py30
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/ScaledOperator.py42
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/SymmetrizedGradientOperator.py118
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/ZeroOperator.py39
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/operators/__init__.py19
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/ops.py294
-rw-r--r--Wrappers/Python/build/lib/ccpi/optimisation/spdhg.py338
-rw-r--r--Wrappers/Python/build/lib/ccpi/processors.py514
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/Function.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py25
-rwxr-xr-xWrappers/Python/ccpi/optimisation/ops.py4
-rwxr-xr-xWrappers/Python/test/test_algorithms.py1
-rw-r--r--Wrappers/Python/test/test_functions.py6
-rwxr-xr-xWrappers/Python/test/test_run_test.py2
50 files changed, 7191 insertions, 15 deletions
diff --git a/Wrappers/Python/build/lib/ccpi/__init__.py b/Wrappers/Python/build/lib/ccpi/__init__.py
new file mode 100644
index 0000000..cf2d93d
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/__init__.py
@@ -0,0 +1,18 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License. \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/framework/BlockDataContainer.py b/Wrappers/Python/build/lib/ccpi/framework/BlockDataContainer.py
new file mode 100644
index 0000000..8e55b67
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/framework/BlockDataContainer.py
@@ -0,0 +1,332 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 16:04:45 2019
+
+@author: ofn77899
+"""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+from numbers import Number
+import functools
+from ccpi.framework import DataContainer
+#from ccpi.framework import AcquisitionData, ImageData
+#from ccpi.optimisation.operators import Operator, LinearOperator
+
+class BlockDataContainer(object):
+ '''Class to hold DataContainers as column vector'''
+ __array_priority__ = 1
+ def __init__(self, *args, **kwargs):
+ ''''''
+ self.containers = args
+ self.index = 0
+ #shape = kwargs.get('shape', None)
+ #if shape is None:
+ # shape = (len(args),1)
+ shape = (len(args),1)
+ self.shape = shape
+ #print (self.shape)
+ n_elements = functools.reduce(lambda x,y: x*y, shape, 1)
+ if len(args) != n_elements:
+ raise ValueError(
+ 'Dimension and size do not match: expected {} got {}'
+ .format(n_elements, len(args)))
+
+
+ def __iter__(self):
+ '''BlockDataContainer is Iterable'''
+ return self
+ def next(self):
+ '''python2 backwards compatibility'''
+ return self.__next__()
+ def __next__(self):
+ try:
+ out = self[self.index]
+ except IndexError as ie:
+ raise StopIteration()
+ self.index+=1
+ return out
+
+ def is_compatible(self, other):
+ '''basic check if the size of the 2 objects fit'''
+ if isinstance(other, Number):
+ return True
+ elif isinstance(other, list):
+ for ot in other:
+ if not isinstance(ot, (Number,\
+ numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\
+ numpy.float, numpy.float16, numpy.float32, numpy.float64, \
+ numpy.complex)):
+ raise ValueError('List/ numpy array can only contain numbers {}'\
+ .format(type(ot)))
+ return len(self.containers) == len(other)
+ elif isinstance(other, numpy.ndarray):
+ return len(self.containers) == len(other)
+ elif issubclass(other.__class__, DataContainer):
+ return self.get_item(0).shape == other.shape
+ return len(self.containers) == len(other.containers)
+
+ def get_item(self, row):
+ if row > self.shape[0]:
+ raise ValueError('Requested row {} > max {}'.format(row, self.shape[0]))
+ return self.containers[row]
+
+ def __getitem__(self, row):
+ return self.get_item(row)
+
+ def add(self, other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for add')
+ out = kwargs.get('out', None)
+ #print ("args" , *args)
+ if isinstance(other, Number):
+ return type(self)(*[ el.add(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.add(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ elif issubclass(other.__class__, DataContainer):
+ # try to do algebra with one DataContainer. Will raise error if not compatible
+ return type(self)(*[ el.add(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+
+ return type(self)(
+ *[ el.add(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)],
+ shape=self.shape)
+
+ def subtract(self, other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for subtract')
+ out = kwargs.get('out', None)
+ if isinstance(other, Number):
+ return type(self)(*[ el.subtract(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.subtract(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ elif issubclass(other.__class__, DataContainer):
+ # try to do algebra with one DataContainer. Will raise error if not compatible
+ return type(self)(*[ el.subtract(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ return type(self)(*[ el.subtract(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)],
+ shape=self.shape)
+
+ def multiply(self, other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('{} Incompatible for multiply'.format(other))
+ out = kwargs.get('out', None)
+ if isinstance(other, Number):
+ return type(self)(*[ el.multiply(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list):
+ return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ elif isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ elif issubclass(other.__class__, DataContainer):
+ # try to do algebra with one DataContainer. Will raise error if not compatible
+ return type(self)(*[ el.multiply(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ return type(self)(*[ el.multiply(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)],
+ shape=self.shape)
+
+ def divide(self, other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for divide')
+ out = kwargs.get('out', None)
+ if isinstance(other, Number):
+ return type(self)(*[ el.divide(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.divide(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ elif issubclass(other.__class__, DataContainer):
+ # try to do algebra with one DataContainer. Will raise error if not compatible
+ return type(self)(*[ el.divide(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ return type(self)(*[ el.divide(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)],
+ shape=self.shape)
+
+ def power(self, other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for power')
+ out = kwargs.get('out', None)
+ if isinstance(other, Number):
+ return type(self)(*[ el.power(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.power(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ return type(self)(*[ el.power(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], shape=self.shape)
+
+ def maximum(self,other, *args, **kwargs):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for maximum')
+ out = kwargs.get('out', None)
+ if isinstance(other, Number):
+ return type(self)(*[ el.maximum(other, *args, **kwargs) for el in self.containers], shape=self.shape)
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ return type(self)(*[ el.maximum(ot, *args, **kwargs) for el,ot in zip(self.containers,other)], shape=self.shape)
+ return type(self)(*[ el.maximum(ot, *args, **kwargs) for el,ot in zip(self.containers,other.containers)], shape=self.shape)
+
+ ## unary operations
+ def abs(self, *args, **kwargs):
+ return type(self)(*[ el.abs(*args, **kwargs) for el in self.containers], shape=self.shape)
+ def sign(self, *args, **kwargs):
+ return type(self)(*[ el.sign(*args, **kwargs) for el in self.containers], shape=self.shape)
+ def sqrt(self, *args, **kwargs):
+ return type(self)(*[ el.sqrt(*args, **kwargs) for el in self.containers], shape=self.shape)
+ def conjugate(self, out=None):
+ return type(self)(*[el.conjugate() for el in self.containers], shape=self.shape)
+
+ ## reductions
+ def sum(self, *args, **kwargs):
+ return numpy.sum([ el.sum(*args, **kwargs) for el in self.containers])
+ def squared_norm(self):
+ y = numpy.asarray([el.squared_norm() for el in self.containers])
+ return y.sum()
+ def norm(self):
+ return numpy.sqrt(self.squared_norm())
+ def copy(self):
+ '''alias of clone'''
+ return self.clone()
+ def clone(self):
+ return type(self)(*[el.copy() for el in self.containers], shape=self.shape)
+ def fill(self, x):
+ for el,ot in zip(self.containers, x):
+ el.fill(ot)
+
+ def __add__(self, other):
+ return self.add( other )
+ # __radd__
+
+ def __sub__(self, other):
+ return self.subtract( other )
+ # __rsub__
+
+ def __mul__(self, other):
+ return self.multiply(other)
+ # __rmul__
+
+ def __div__(self, other):
+ return self.divide(other)
+ # __rdiv__
+ def __truediv__(self, other):
+ return self.divide(other)
+
+ def __pow__(self, other):
+ return self.power(other)
+ # reverse operand
+ def __radd__(self, other):
+ '''Reverse addition
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return self + other
+ # __radd__
+
+ def __rsub__(self, other):
+ '''Reverse subtraction
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return (-1 * self) + other
+ # __rsub__
+
+ def __rmul__(self, other):
+ '''Reverse multiplication
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return self * other
+ # __rmul__
+
+ def __rdiv__(self, other):
+ '''Reverse division
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return pow(self / other, -1)
+ # __rdiv__
+ def __rtruediv__(self, other):
+ '''Reverse truedivision
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return self.__rdiv__(other)
+
+ def __rpow__(self, other):
+ '''Reverse power
+
+ to make sure that this method is called rather than the __mul__ of a numpy array
+ the class constant __array_priority__ must be set > 0
+ https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__
+ '''
+ return other.power(self)
+
+ def __iadd__(self, other):
+ '''Inline addition'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el += ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el += other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for __iadd__')
+ for el,ot in zip(self.containers, other):
+ el += ot
+ return self
+ # __iadd__
+
+ def __isub__(self, other):
+ '''Inline subtraction'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el -= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el -= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for __isub__')
+ for el,ot in zip(self.containers, other):
+ el -= ot
+ return self
+ # __isub__
+
+ def __imul__(self, other):
+ '''Inline multiplication'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el *= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el *= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for __imul__')
+ for el,ot in zip(self.containers, other):
+ el *= ot
+ return self
+ # __imul__
+
+ def __idiv__(self, other):
+ '''Inline division'''
+ if isinstance (other, BlockDataContainer):
+ for el,ot in zip(self.containers, other.containers):
+ el /= ot
+ elif isinstance(other, Number):
+ for el in self.containers:
+ el /= other
+ elif isinstance(other, list) or isinstance(other, numpy.ndarray):
+ if not self.is_compatible(other):
+ raise ValueError('Incompatible for __idiv__')
+ for el,ot in zip(self.containers, other):
+ el /= ot
+ return self
+ # __rdiv__
+ def __itruediv__(self, other):
+ '''Inline truedivision'''
+ return self.__idiv__(other)
+
diff --git a/Wrappers/Python/build/lib/ccpi/framework/BlockGeometry.py b/Wrappers/Python/build/lib/ccpi/framework/BlockGeometry.py
new file mode 100644
index 0000000..d336305
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/framework/BlockGeometry.py
@@ -0,0 +1,34 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+from numbers import Number
+import functools
+from ccpi.framework import BlockDataContainer
+#from ccpi.optimisation.operators import Operator, LinearOperator
+
+class BlockGeometry(object):
+ '''Class to hold Geometry as column vector'''
+ #__array_priority__ = 1
+ def __init__(self, *args, **kwargs):
+ ''''''
+ self.geometries = args
+ self.index = 0
+ #shape = kwargs.get('shape', None)
+ #if shape is None:
+ # shape = (len(args),1)
+ shape = (len(args),1)
+ self.shape = shape
+ #print (self.shape)
+ n_elements = functools.reduce(lambda x,y: x*y, shape, 1)
+ if len(args) != n_elements:
+ raise ValueError(
+ 'Dimension and size do not match: expected {} got {}'
+ .format(n_elements, len(args)))
+
+ def allocate(self, value=0, dimension_labels=None):
+ containers = [geom.allocate(value) for geom in self.geometries]
+ return BlockDataContainer(*containers)
+
diff --git a/Wrappers/Python/build/lib/ccpi/framework/__init__.py b/Wrappers/Python/build/lib/ccpi/framework/__init__.py
new file mode 100644
index 0000000..66e2f56
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/framework/__init__.py
@@ -0,0 +1,25 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 16:00:18 2019
+
+@author: ofn77899
+"""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+import sys
+from datetime import timedelta, datetime
+import warnings
+from functools import reduce
+
+from .framework import DataContainer
+from .framework import ImageData, AcquisitionData
+from .framework import ImageGeometry, AcquisitionGeometry
+from .framework import find_key, message
+from .framework import DataProcessor
+from .framework import AX, PixelByPixelDataProcessor, CastDataContainer
+from .BlockDataContainer import BlockDataContainer
+from .BlockGeometry import BlockGeometry
diff --git a/Wrappers/Python/build/lib/ccpi/framework/framework.py b/Wrappers/Python/build/lib/ccpi/framework/framework.py
new file mode 100644
index 0000000..ae9faf7
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/framework/framework.py
@@ -0,0 +1,1493 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+import sys
+from datetime import timedelta, datetime
+import warnings
+from functools import reduce
+from numbers import Number
+
+def find_key(dic, val):
+ """return the key of dictionary dic given the value"""
+ return [k for k, v in dic.items() if v == val][0]
+
+def message(cls, msg, *args):
+ msg = "{0}: " + msg
+ for i in range(len(args)):
+ msg += " {%d}" %(i+1)
+ args = list(args)
+ args.insert(0, cls.__name__ )
+
+ return msg.format(*args )
+
+
+class ImageGeometry(object):
+ RANDOM = 'random'
+ RANDOM_INT = 'random_int'
+ CHANNEL = 'channel'
+ ANGLE = 'angle'
+ VERTICAL = 'vertical'
+ HORIZONTAL_X = 'horizontal_x'
+ HORIZONTAL_Y = 'horizontal_y'
+
+ def __init__(self,
+ voxel_num_x=0,
+ voxel_num_y=0,
+ voxel_num_z=0,
+ voxel_size_x=1,
+ voxel_size_y=1,
+ voxel_size_z=1,
+ center_x=0,
+ center_y=0,
+ center_z=0,
+ channels=1):
+
+ self.voxel_num_x = voxel_num_x
+ self.voxel_num_y = voxel_num_y
+ self.voxel_num_z = voxel_num_z
+ self.voxel_size_x = voxel_size_x
+ self.voxel_size_y = voxel_size_y
+ self.voxel_size_z = voxel_size_z
+ self.center_x = center_x
+ self.center_y = center_y
+ self.center_z = center_z
+ self.channels = channels
+
+ # this is some code repetition
+ if self.channels > 1:
+ if self.voxel_num_z>1:
+ self.length = 4
+ self.shape = (self.channels, self.voxel_num_z, self.voxel_num_y, self.voxel_num_x)
+ dim_labels = [ImageGeometry.CHANNEL, ImageGeometry.VERTICAL,
+ ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X]
+ else:
+ self.length = 3
+ self.shape = (self.channels, self.voxel_num_y, self.voxel_num_x)
+ dim_labels = [ImageGeometry.CHANNEL, ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X]
+ else:
+ if self.voxel_num_z>1:
+ self.length = 3
+ self.shape = (self.voxel_num_z, self.voxel_num_y, self.voxel_num_x)
+ dim_labels = [ImageGeometry.VERTICAL, ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ else:
+ self.length = 2
+ self.shape = (self.voxel_num_y, self.voxel_num_x)
+ dim_labels = [ImageGeometry.HORIZONTAL_Y, ImageGeometry.HORIZONTAL_X]
+
+ self.dimension_labels = dim_labels
+
+ def get_min_x(self):
+ return self.center_x - 0.5*self.voxel_num_x*self.voxel_size_x
+
+ def get_max_x(self):
+ return self.center_x + 0.5*self.voxel_num_x*self.voxel_size_x
+
+ def get_min_y(self):
+ return self.center_y - 0.5*self.voxel_num_y*self.voxel_size_y
+
+ def get_max_y(self):
+ return self.center_y + 0.5*self.voxel_num_y*self.voxel_size_y
+
+ def get_min_z(self):
+ if not self.voxel_num_z == 0:
+ return self.center_z - 0.5*self.voxel_num_z*self.voxel_size_z
+ else:
+ return 0
+
+ def get_max_z(self):
+ if not self.voxel_num_z == 0:
+ return self.center_z + 0.5*self.voxel_num_z*self.voxel_size_z
+ else:
+ return 0
+
+ def clone(self):
+ '''returns a copy of ImageGeometry'''
+ return ImageGeometry(
+ self.voxel_num_x,
+ self.voxel_num_y,
+ self.voxel_num_z,
+ self.voxel_size_x,
+ self.voxel_size_y,
+ self.voxel_size_z,
+ self.center_x,
+ self.center_y,
+ self.center_z,
+ self.channels)
+ def __str__ (self):
+ repres = ""
+ repres += "Number of channels: {0}\n".format(self.channels)
+ repres += "voxel_num : x{0},y{1},z{2}\n".format(self.voxel_num_x, self.voxel_num_y, self.voxel_num_z)
+ repres += "voxel_size : x{0},y{1},z{2}\n".format(self.voxel_size_x, self.voxel_size_y, self.voxel_size_z)
+ repres += "center : x{0},y{1},z{2}\n".format(self.center_x, self.center_y, self.center_z)
+ return repres
+ def allocate(self, value=0, dimension_labels=None, **kwargs):
+ '''allocates an ImageData according to the size expressed in the instance'''
+ out = ImageData(geometry=self)
+ if isinstance(value, Number):
+ if value != 0:
+ out += value
+ else:
+ if value == ImageGeometry.RANDOM:
+ seed = kwargs.get('seed', None)
+ if seed is not None:
+ numpy.random.seed(seed)
+ out.fill(numpy.random.random_sample(self.shape))
+ elif value == ImageGeometry.RANDOM_INT:
+ seed = kwargs.get('seed', None)
+ if seed is not None:
+ numpy.random.seed(seed)
+ max_value = kwargs.get('max_value', 100)
+ out.fill(numpy.random.randint(max_value,size=self.shape))
+ else:
+ raise ValueError('Value {} unknown'.format(value))
+ if dimension_labels is not None:
+ if dimension_labels != self.dimension_labels:
+ return out.subset(dimensions=dimension_labels)
+ return out
+ # The following methods return 2 members of the class, therefore I
+ # don't think we need to implement them.
+ # Additionally using __len__ is confusing as one would think this is
+ # an iterable.
+ #def __len__(self):
+ # '''returns the length of the geometry'''
+ # return self.length
+ #def shape(self):
+ # '''Returns the shape of the array of the ImageData it describes'''
+ # return self.shape
+
+class AcquisitionGeometry(object):
+ RANDOM = 'random'
+ RANDOM_INT = 'random_int'
+ ANGLE_UNIT = 'angle_unit'
+ DEGREE = 'degree'
+ RADIAN = 'radian'
+ CHANNEL = 'channel'
+ ANGLE = 'angle'
+ VERTICAL = 'vertical'
+ HORIZONTAL = 'horizontal'
+ def __init__(self,
+ geom_type,
+ dimension,
+ angles,
+ pixel_num_h=0,
+ pixel_size_h=1,
+ pixel_num_v=0,
+ pixel_size_v=1,
+ dist_source_center=None,
+ dist_center_detector=None,
+ channels=1,
+ **kwargs
+ ):
+ """
+ General inputs for standard type projection geometries
+ detectorDomain or detectorpixelSize:
+ If 2D
+ If scalar: Width of detector or single detector pixel
+ If 2-vec: Error
+ If 3D
+ If scalar: Width in both dimensions
+ If 2-vec: Vertical then horizontal size
+ grid
+ If 2D
+ If scalar: number of detectors
+ If 2-vec: error
+ If 3D
+ If scalar: Square grid that size
+ If 2-vec vertical then horizontal size
+ cone or parallel
+ 2D or 3D
+ parallel_parameters: ?
+ cone_parameters:
+ source_to_center_dist (if parallel: NaN)
+ center_to_detector_dist (if parallel: NaN)
+ standard or nonstandard (vec) geometry
+ angles
+ angles_format radians or degrees
+ """
+ self.geom_type = geom_type # 'parallel' or 'cone'
+ self.dimension = dimension # 2D or 3D
+ self.angles = angles
+ num_of_angles = len (angles)
+
+ self.dist_source_center = dist_source_center
+ self.dist_center_detector = dist_center_detector
+
+ self.pixel_num_h = pixel_num_h
+ self.pixel_size_h = pixel_size_h
+ self.pixel_num_v = pixel_num_v
+ self.pixel_size_v = pixel_size_v
+
+ self.channels = channels
+ self.angle_unit=kwargs.get(AcquisitionGeometry.ANGLE_UNIT,
+ AcquisitionGeometry.DEGREE)
+ if channels > 1:
+ if pixel_num_v > 1:
+ shape = (channels, num_of_angles , pixel_num_v, pixel_num_h)
+ dim_labels = [AcquisitionGeometry.CHANNEL ,
+ AcquisitionGeometry.ANGLE , AcquisitionGeometry.VERTICAL ,
+ AcquisitionGeometry.HORIZONTAL]
+ else:
+ shape = (channels , num_of_angles, pixel_num_h)
+ dim_labels = [AcquisitionGeometry.CHANNEL ,
+ AcquisitionGeometry.ANGLE, AcquisitionGeometry.HORIZONTAL]
+ else:
+ if pixel_num_v > 1:
+ shape = (num_of_angles, pixel_num_v, pixel_num_h)
+ dim_labels = [AcquisitionGeometry.ANGLE , AcquisitionGeometry.VERTICAL ,
+ AcquisitionGeometry.HORIZONTAL]
+ else:
+ shape = (num_of_angles, pixel_num_h)
+ dim_labels = [AcquisitionGeometry.ANGLE, AcquisitionGeometry.HORIZONTAL]
+ self.shape = shape
+
+ self.dimension_labels = dim_labels
+
+ def clone(self):
+ '''returns a copy of the AcquisitionGeometry'''
+ return AcquisitionGeometry(self.geom_type,
+ self.dimension,
+ self.angles,
+ self.pixel_num_h,
+ self.pixel_size_h,
+ self.pixel_num_v,
+ self.pixel_size_v,
+ self.dist_source_center,
+ self.dist_center_detector,
+ self.channels)
+
+ def __str__ (self):
+ repres = ""
+ repres += "Number of dimensions: {0}\n".format(self.dimension)
+ repres += "angles: {0}\n".format(self.angles)
+ repres += "voxel_num : h{0},v{1}\n".format(self.pixel_num_h, self.pixel_num_v)
+ repres += "voxel size: h{0},v{1}\n".format(self.pixel_size_h, self.pixel_size_v)
+ repres += "geometry type: {0}\n".format(self.geom_type)
+ repres += "distance source-detector: {0}\n".format(self.dist_source_center)
+ repres += "distance center-detector: {0}\n".format(self.dist_source_center)
+ repres += "number of channels: {0}\n".format(self.channels)
+ return repres
+ def allocate(self, value=0, dimension_labels=None):
+ '''allocates an AcquisitionData according to the size expressed in the instance'''
+ out = AcquisitionData(geometry=self)
+ if isinstance(value, Number):
+ if value != 0:
+ out += value
+ else:
+ if value == AcquisitionData.RANDOM:
+ seed = kwargs.get('seed', None)
+ if seed is not None:
+ numpy.random.seed(seed)
+ out.fill(numpy.random.random_sample(self.shape))
+ elif value == AcquisitionData.RANDOM_INT:
+ seed = kwargs.get('seed', None)
+ if seed is not None:
+ numpy.random.seed(seed)
+ max_value = kwargs.get('max_value', 100)
+ out.fill(numpy.random.randint(max_value,size=self.shape))
+ else:
+ raise ValueError('Value {} unknown'.format(value))
+ if dimension_labels is not None:
+ if dimension_labels != self.dimension_labels:
+ return out.subset(dimensions=dimension_labels)
+ return out
+
+class DataContainer(object):
+ '''Generic class to hold data
+
+ Data is currently held in a numpy arrays'''
+
+ def __init__ (self, array, deep_copy=True, dimension_labels=None,
+ **kwargs):
+ '''Holds the data'''
+
+ self.shape = numpy.shape(array)
+ self.number_of_dimensions = len (self.shape)
+ self.dimension_labels = {}
+ self.geometry = None # Only relevant for AcquisitionData and ImageData
+
+ if dimension_labels is not None and \
+ len (dimension_labels) == self.number_of_dimensions:
+ for i in range(self.number_of_dimensions):
+ self.dimension_labels[i] = dimension_labels[i]
+ else:
+ for i in range(self.number_of_dimensions):
+ self.dimension_labels[i] = 'dimension_{0:02}'.format(i)
+
+ if type(array) == numpy.ndarray:
+ if deep_copy:
+ self.array = array.copy()
+ else:
+ self.array = array
+ else:
+ raise TypeError('Array must be NumpyArray, passed {0}'\
+ .format(type(array)))
+
+ # finally copy the geometry
+ if 'geometry' in kwargs.keys():
+ self.geometry = kwargs['geometry']
+ else:
+ # assume it is parallel beam
+ pass
+
+ def get_dimension_size(self, dimension_label):
+ if dimension_label in self.dimension_labels.values():
+ acq_size = -1
+ for k,v in self.dimension_labels.items():
+ if v == dimension_label:
+ acq_size = self.shape[k]
+ return acq_size
+ else:
+ raise ValueError('Unknown dimension {0}. Should be one of'.format(dimension_label,
+ self.dimension_labels))
+ def get_dimension_axis(self, dimension_label):
+ if dimension_label in self.dimension_labels.values():
+ for k,v in self.dimension_labels.items():
+ if v == dimension_label:
+ return k
+ else:
+ raise ValueError('Unknown dimension {0}. Should be one of'.format(dimension_label,
+ self.dimension_labels.values()))
+
+
+ def as_array(self, dimensions=None):
+ '''Returns the DataContainer as Numpy Array
+
+ Returns the pointer to the array if dimensions is not set.
+ If dimensions is set, it first creates a new DataContainer with the subset
+ and then it returns the pointer to the array'''
+ if dimensions is not None:
+ return self.subset(dimensions).as_array()
+ return self.array
+
+
+ def subset(self, dimensions=None, **kw):
+ '''Creates a DataContainer containing a subset of self according to the
+ labels in dimensions'''
+ if dimensions is None:
+ if kw == {}:
+ return self.array.copy()
+ else:
+ reduced_dims = [v for k,v in self.dimension_labels.items()]
+ for dim_l, dim_v in kw.items():
+ for k,v in self.dimension_labels.items():
+ if v == dim_l:
+ reduced_dims.pop(k)
+ return self.subset(dimensions=reduced_dims, **kw)
+ else:
+ # check that all the requested dimensions are in the array
+ # this is done by checking the dimension_labels
+ proceed = True
+ unknown_key = ''
+ # axis_order contains the order of the axis that the user wants
+ # in the output DataContainer
+ axis_order = []
+ if type(dimensions) == list:
+ for dl in dimensions:
+ if dl not in self.dimension_labels.values():
+ proceed = False
+ unknown_key = dl
+ break
+ else:
+ axis_order.append(find_key(self.dimension_labels, dl))
+ if not proceed:
+ raise KeyError('Subset error: Unknown key specified {0}'.format(dl))
+
+ # slice away the unwanted data from the array
+ unwanted_dimensions = self.dimension_labels.copy()
+ left_dimensions = []
+ for ax in sorted(axis_order):
+ this_dimension = unwanted_dimensions.pop(ax)
+ left_dimensions.append(this_dimension)
+ #print ("unwanted_dimensions {0}".format(unwanted_dimensions))
+ #print ("left_dimensions {0}".format(left_dimensions))
+ #new_shape = [self.shape[ax] for ax in axis_order]
+ #print ("new_shape {0}".format(new_shape))
+ command = "self.array["
+ for i in range(self.number_of_dimensions):
+ if self.dimension_labels[i] in unwanted_dimensions.values():
+ value = 0
+ for k,v in kw.items():
+ if k == self.dimension_labels[i]:
+ value = v
+
+ command = command + str(value)
+ else:
+ command = command + ":"
+ if i < self.number_of_dimensions -1:
+ command = command + ','
+ command = command + ']'
+
+ cleaned = eval(command)
+ # cleaned has collapsed dimensions in the same order of
+ # self.array, but we want it in the order stated in the
+ # "dimensions".
+ # create axes order for numpy.transpose
+ axes = []
+ for key in dimensions:
+ #print ("key {0}".format( key))
+ for i in range(len( left_dimensions )):
+ ld = left_dimensions[i]
+ #print ("ld {0}".format( ld))
+ if ld == key:
+ axes.append(i)
+ #print ("axes {0}".format(axes))
+
+ cleaned = numpy.transpose(cleaned, axes).copy()
+
+ return type(self)(cleaned , True, dimensions)
+
+ def fill(self, array, **dimension):
+ '''fills the internal numpy array with the one provided'''
+ if dimension == {}:
+ if issubclass(type(array), DataContainer) or\
+ issubclass(type(array), numpy.ndarray):
+ if array.shape != self.shape:
+ raise ValueError('Cannot fill with the provided array.' + \
+ 'Expecting {0} got {1}'.format(
+ self.shape,array.shape))
+ if issubclass(type(array), DataContainer):
+ numpy.copyto(self.array, array.array)
+ else:
+ #self.array[:] = array
+ numpy.copyto(self.array, array)
+ else:
+
+ command = 'self.array['
+ i = 0
+ for k,v in self.dimension_labels.items():
+ for dim_label, dim_value in dimension.items():
+ if dim_label == v:
+ command = command + str(dim_value)
+ else:
+ command = command + ":"
+ if i < self.number_of_dimensions -1:
+ command = command + ','
+ i += 1
+ command = command + "] = array[:]"
+ exec(command)
+
+
+ def check_dimensions(self, other):
+ return self.shape == other.shape
+
+ ## algebra
+ def __add__(self, other, *args, **kwargs):
+ out = kwargs.get('out', None)
+ if issubclass(type(other), DataContainer):
+ if self.check_dimensions(other):
+ out = self.as_array() + other.as_array()
+ return type(self)(out,
+ deep_copy=True,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise ValueError('Wrong shape: {0} and {1}'.format(self.shape,
+ other.shape))
+ elif isinstance(other, (int, float, complex)):
+ return type(self)(
+ self.as_array() + other,
+ deep_copy=True,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise TypeError('Cannot {0} DataContainer with {1}'.format("add" ,
+ type(other)))
+ # __add__
+
+ def __sub__(self, other):
+ if issubclass(type(other), DataContainer):
+ if self.check_dimensions(other):
+ out = self.as_array() - other.as_array()
+ return type(self)(out,
+ deep_copy=True,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise ValueError('__sub__ Wrong shape: {0} and {1}'.format(self.shape,
+ other.shape))
+ elif isinstance(other, (int, float, complex)):
+ return type(self)(self.as_array() - other,
+ deep_copy=True,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise TypeError('Cannot {0} DataContainer with {1}'.format("subtract" ,
+ type(other)))
+ # __sub__
+ def __truediv__(self,other):
+ return self.__div__(other)
+
+ def __div__(self, other):
+ if issubclass(type(other), DataContainer):
+ if self.check_dimensions(other):
+ out = self.as_array() / other.as_array()
+ return type(self)(out,
+ deep_copy=True,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise ValueError('__div__ Wrong shape: {0} and {1}'.format(self.shape,
+ other.shape))
+ elif isinstance(other, (int, float, complex)):
+ return type(self)(self.as_array() / other,
+ deep_copy=True,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise TypeError('Cannot {0} DataContainer with {1}'.format("divide" ,
+ type(other)))
+ # __div__
+
+ def __pow__(self, other):
+ if issubclass(type(other), DataContainer):
+ if self.check_dimensions(other):
+ out = self.as_array() ** other.as_array()
+ return type(self)(out,
+ deep_copy=True,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise ValueError('__pow__ Wrong shape: {0} and {1}'.format(self.shape,
+ other.shape))
+ elif isinstance(other, (int, float, complex)):
+ return type(self)(self.as_array() ** other,
+ deep_copy=True,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise TypeError('pow: Cannot {0} DataContainer with {1}'.format("power" ,
+ type(other)))
+ # __pow__
+
+ def __mul__(self, other):
+ if issubclass(type(other), DataContainer):
+ if self.check_dimensions(other):
+ out = self.as_array() * other.as_array()
+ return type(self)(out,
+ deep_copy=True,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise ValueError('*:Wrong shape: {0} and {1}'.format(self.shape,
+ other.shape))
+ elif isinstance(other, (int, float, complex,\
+ numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\
+ numpy.float, numpy.float16, numpy.float32, numpy.float64, \
+ numpy.complex)):
+ return type(self)(self.as_array() * other,
+ deep_copy=True,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise TypeError('Cannot {0} DataContainer with {1}'.format("multiply" ,
+ type(other)))
+ # __mul__
+
+ # reverse operand
+ def __radd__(self, other):
+ return self + other
+ # __radd__
+
+ def __rsub__(self, other):
+ return (-1 * self) + other
+ # __rsub__
+
+ def __rmul__(self, other):
+ return self * other
+ # __rmul__
+
+ def __rdiv__(self, other):
+ print ("call __rdiv__")
+ return pow(self / other, -1)
+ # __rdiv__
+ def __rtruediv__(self, other):
+ return self.__rdiv__(other)
+
+ def __rpow__(self, other):
+ if isinstance(other, (int, float)) :
+ fother = numpy.ones(numpy.shape(self.array)) * other
+ return type(self)(fother ** self.array ,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ elif issubclass(type(other), DataContainer):
+ if self.check_dimensions(other):
+ return type(self)(other.as_array() ** self.array ,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ else:
+ raise ValueError('Dimensions do not match')
+ # __rpow__
+
+ # in-place arithmetic operators:
+ # (+=, -=, *=, /= , //=,
+ # must return self
+
+
+
+ def __iadd__(self, other):
+ if isinstance(other, (int, float)) :
+ numpy.add(self.array, other, out=self.array)
+ elif issubclass(type(other), DataContainer):
+ if self.check_dimensions(other):
+ numpy.add(self.array, other.array, out=self.array)
+ else:
+ raise ValueError('Dimensions do not match')
+ return self
+ # __iadd__
+
+ def __imul__(self, other):
+ if isinstance(other, (int, float)) :
+ arr = self.as_array()
+ numpy.multiply(arr, other, out=arr)
+ elif issubclass(type(other), DataContainer):
+ if self.check_dimensions(other):
+ numpy.multiply(self.array, other.array, out=self.array)
+ else:
+ raise ValueError('Dimensions do not match')
+ return self
+ # __imul__
+
+ def __isub__(self, other):
+ if isinstance(other, (int, float)) :
+ numpy.subtract(self.array, other, out=self.array)
+ elif issubclass(type(other), DataContainer):
+ if self.check_dimensions(other):
+ numpy.subtract(self.array, other.array, out=self.array)
+ else:
+ raise ValueError('Dimensions do not match')
+ return self
+ # __isub__
+
+ def __idiv__(self, other):
+ return self.__itruediv__(other)
+ def __itruediv__(self, other):
+ if isinstance(other, (int, float)) :
+ numpy.divide(self.array, other, out=self.array)
+ elif issubclass(type(other), DataContainer):
+ if self.check_dimensions(other):
+ numpy.divide(self.array, other.array, out=self.array)
+ else:
+ raise ValueError('Dimensions do not match')
+ return self
+ # __idiv__
+
+ def __str__ (self, representation=False):
+ repres = ""
+ repres += "Number of dimensions: {0}\n".format(self.number_of_dimensions)
+ repres += "Shape: {0}\n".format(self.shape)
+ repres += "Axis labels: {0}\n".format(self.dimension_labels)
+ if representation:
+ repres += "Representation: \n{0}\n".format(self.array)
+ return repres
+
+ def clone(self):
+ '''returns a copy of itself'''
+
+ return type(self)(self.array,
+ dimension_labels=self.dimension_labels,
+ deep_copy=True,
+ geometry=self.geometry )
+
+ def get_data_axes_order(self,new_order=None):
+ '''returns the axes label of self as a list
+
+ if new_order is None returns the labels of the axes as a sorted-by-key list
+ if new_order is a list of length number_of_dimensions, returns a list
+ with the indices of the axes in new_order with respect to those in
+ self.dimension_labels: i.e.
+ self.dimension_labels = {0:'horizontal',1:'vertical'}
+ new_order = ['vertical','horizontal']
+ returns [1,0]
+ '''
+ if new_order is None:
+
+ axes_order = [i for i in range(len(self.shape))]
+ for k,v in self.dimension_labels.items():
+ axes_order[k] = v
+ return axes_order
+ else:
+ if len(new_order) == self.number_of_dimensions:
+ axes_order = [i for i in range(self.number_of_dimensions)]
+
+ for i in range(len(self.shape)):
+ found = False
+ for k,v in self.dimension_labels.items():
+ if new_order[i] == v:
+ axes_order[i] = k
+ found = True
+ if not found:
+ raise ValueError('Axis label {0} not found.'.format(new_order[i]))
+ return axes_order
+ else:
+ raise ValueError('Expecting {0} axes, got {2}'\
+ .format(len(self.shape),len(new_order)))
+
+
+ def copy(self):
+ '''alias of clone'''
+ return self.clone()
+
+ ## binary operations
+
+ def pixel_wise_binary(self, pwop, x2, *args, **kwargs):
+ out = kwargs.get('out', None)
+ if out is None:
+ if isinstance(x2, (int, float, complex)):
+ out = pwop(self.as_array() , x2 , *args, **kwargs )
+ elif isinstance(x2, (numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64,\
+ numpy.float, numpy.float16, numpy.float32, numpy.float64, \
+ numpy.complex)):
+ out = pwop(self.as_array() , x2 , *args, **kwargs )
+ elif issubclass(type(x2) , DataContainer):
+ out = pwop(self.as_array() , x2.as_array() , *args, **kwargs )
+ return type(self)(out,
+ deep_copy=False,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+
+
+ elif issubclass(type(out), DataContainer) and issubclass(type(x2), DataContainer):
+ if self.check_dimensions(out) and self.check_dimensions(x2):
+ kwargs['out'] = out.as_array()
+ pwop(self.as_array(), x2.as_array(), *args, **kwargs )
+ #return type(self)(out.as_array(),
+ # deep_copy=False,
+ # dimension_labels=self.dimension_labels,
+ # geometry=self.geometry)
+ return out
+ else:
+ raise ValueError(message(type(self),"Wrong size for data memory: ", out.shape,self.shape))
+ elif issubclass(type(out), DataContainer) and isinstance(x2, (int,float,complex)):
+ if self.check_dimensions(out):
+ kwargs['out']=out.as_array()
+ pwop(self.as_array(), x2, *args, **kwargs )
+ return out
+ else:
+ raise ValueError(message(type(self),"Wrong size for data memory: ", out.shape,self.shape))
+ elif issubclass(type(out), numpy.ndarray):
+ if self.array.shape == out.shape and self.array.dtype == out.dtype:
+ kwargs['out'] = out
+ pwop(self.as_array(), x2, *args, **kwargs)
+ #return type(self)(out,
+ # deep_copy=False,
+ # dimension_labels=self.dimension_labels,
+ # geometry=self.geometry)
+ else:
+ raise ValueError (message(type(self), "incompatible class:" , pwop.__name__, type(out)))
+
+ def add(self, other, *args, **kwargs):
+ return self.pixel_wise_binary(numpy.add, other, *args, **kwargs)
+
+ def subtract(self, other, *args, **kwargs):
+ return self.pixel_wise_binary(numpy.subtract, other, *args, **kwargs)
+
+ def multiply(self, other, *args, **kwargs):
+ return self.pixel_wise_binary(numpy.multiply, other, *args, **kwargs)
+
+ def divide(self, other, *args, **kwargs):
+ return self.pixel_wise_binary(numpy.divide, other, *args, **kwargs)
+
+ def power(self, other, *args, **kwargs):
+ return self.pixel_wise_binary(numpy.power, other, *args, **kwargs)
+
+ def maximum(self, x2, *args, **kwargs):
+ return self.pixel_wise_binary(numpy.maximum, x2, *args, **kwargs)
+
+ ## unary operations
+ def pixel_wise_unary(self, pwop, *args, **kwargs):
+ out = kwargs.get('out', None)
+ if out is None:
+ out = pwop(self.as_array() , *args, **kwargs )
+ return type(self)(out,
+ deep_copy=False,
+ dimension_labels=self.dimension_labels,
+ geometry=self.geometry)
+ elif issubclass(type(out), DataContainer):
+ if self.check_dimensions(out):
+ kwargs['out'] = out.as_array()
+ pwop(self.as_array(), *args, **kwargs )
+ else:
+ raise ValueError(message(type(self),"Wrong size for data memory: ", out.shape,self.shape))
+ elif issubclass(type(out), numpy.ndarray):
+ if self.array.shape == out.shape and self.array.dtype == out.dtype:
+ kwargs['out'] = out
+ pwop(self.as_array(), *args, **kwargs)
+ else:
+ raise ValueError (message(type(self), "incompatible class:" , pwop.__name__, type(out)))
+
+ def abs(self, *args, **kwargs):
+ return self.pixel_wise_unary(numpy.abs, *args, **kwargs)
+
+ def sign(self, *args, **kwargs):
+ return self.pixel_wise_unary(numpy.sign, *args, **kwargs)
+
+ def sqrt(self, *args, **kwargs):
+ return self.pixel_wise_unary(numpy.sqrt, *args, **kwargs)
+
+ def conjugate(self, *args, **kwargs):
+ return self.pixel_wise_unary(numpy.conjugate, *args, **kwargs)
+ #def __abs__(self):
+ # operation = FM.OPERATION.ABS
+ # return self.callFieldMath(operation, None, self.mask, self.maskOnValue)
+ # __abs__
+
+ ## reductions
+ def sum(self, *args, **kwargs):
+ return self.as_array().sum(*args, **kwargs)
+ def squared_norm(self):
+ '''return the squared euclidean norm of the DataContainer viewed as a vector'''
+ #shape = self.shape
+ #size = reduce(lambda x,y:x*y, shape, 1)
+ #y = numpy.reshape(self.as_array(), (size, ))
+ return self.dot(self.conjugate())
+ #return self.dot(self)
+ def norm(self):
+ '''return the euclidean norm of the DataContainer viewed as a vector'''
+ return numpy.sqrt(self.squared_norm())
+ def dot(self, other, *args, **kwargs):
+ '''return the inner product of 2 DataContainers viewed as vectors'''
+ if self.shape == other.shape:
+ return numpy.dot(self.as_array().ravel(), other.as_array().ravel())
+ else:
+ raise ValueError('Shapes are not aligned: {} != {}'.format(self.shape, other.shape))
+
+
+
+
+
+class ImageData(DataContainer):
+ '''DataContainer for holding 2D or 3D DataContainer'''
+
+ def __init__(self,
+ array = None,
+ deep_copy=False,
+ dimension_labels=None,
+ **kwargs):
+
+ self.geometry = None
+ if array is None:
+ if 'geometry' in kwargs.keys():
+ geometry = kwargs['geometry']
+ self.geometry = geometry
+ channels = geometry.channels
+ horiz_x = geometry.voxel_num_x
+ horiz_y = geometry.voxel_num_y
+ vert = 1 if geometry.voxel_num_z is None\
+ else geometry.voxel_num_z # this should be 1 for 2D
+ if dimension_labels is None:
+ if channels > 1:
+ if vert > 1:
+ shape = (channels, vert, horiz_y, horiz_x)
+ dim_labels = [ImageGeometry.CHANNEL,
+ ImageGeometry.VERTICAL,
+ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ else:
+ shape = (channels , horiz_y, horiz_x)
+ dim_labels = [ImageGeometry.CHANNEL,
+ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ else:
+ if vert > 1:
+ shape = (vert, horiz_y, horiz_x)
+ dim_labels = [ImageGeometry.VERTICAL,
+ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ else:
+ shape = (horiz_y, horiz_x)
+ dim_labels = [ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ dimension_labels = dim_labels
+ else:
+ shape = []
+ for dim in dimension_labels:
+ if dim == ImageGeometry.CHANNEL:
+ shape.append(channels)
+ elif dim == ImageGeometry.HORIZONTAL_Y:
+ shape.append(horiz_y)
+ elif dim == ImageGeometry.VERTICAL:
+ shape.append(vert)
+ elif dim == ImageGeometry.HORIZONTAL_X:
+ shape.append(horiz_x)
+ if len(shape) != len(dimension_labels):
+ raise ValueError('Missing {0} axes'.format(
+ len(dimension_labels) - len(shape)))
+ shape = tuple(shape)
+
+ array = numpy.zeros( shape , dtype=numpy.float32)
+ super(ImageData, self).__init__(array, deep_copy,
+ dimension_labels, **kwargs)
+
+ else:
+ raise ValueError('Please pass either a DataContainer, ' +\
+ 'a numpy array or a geometry')
+ else:
+ if issubclass(type(array) , DataContainer):
+ # if the array is a DataContainer get the info from there
+ if not ( array.number_of_dimensions == 2 or \
+ array.number_of_dimensions == 3 or \
+ array.number_of_dimensions == 4):
+ raise ValueError('Number of dimensions are not 2 or 3 or 4: {0}'\
+ .format(array.number_of_dimensions))
+
+ #DataContainer.__init__(self, array.as_array(), deep_copy,
+ # array.dimension_labels, **kwargs)
+ super(ImageData, self).__init__(array.as_array(), deep_copy,
+ array.dimension_labels, **kwargs)
+ elif issubclass(type(array) , numpy.ndarray):
+ if not ( array.ndim == 2 or array.ndim == 3 or array.ndim == 4 ):
+ raise ValueError(
+ 'Number of dimensions are not 2 or 3 or 4 : {0}'\
+ .format(array.ndim))
+
+ if dimension_labels is None:
+ if array.ndim == 4:
+ dimension_labels = [ImageGeometry.CHANNEL,
+ ImageGeometry.VERTICAL,
+ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ elif array.ndim == 3:
+ dimension_labels = [ImageGeometry.VERTICAL,
+ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+ else:
+ dimension_labels = [ ImageGeometry.HORIZONTAL_Y,
+ ImageGeometry.HORIZONTAL_X]
+
+ #DataContainer.__init__(self, array, deep_copy, dimension_labels, **kwargs)
+ super(ImageData, self).__init__(array, deep_copy,
+ dimension_labels, **kwargs)
+
+ # load metadata from kwargs if present
+ for key, value in kwargs.items():
+ if (type(value) == list or type(value) == tuple) and \
+ ( len (value) == 3 and len (value) == 2) :
+ if key == 'origin' :
+ self.origin = value
+ if key == 'spacing' :
+ self.spacing = value
+
+ def subset(self, dimensions=None, **kw):
+ # FIXME: this is clearly not rigth
+ # it should be something like
+ # out = DataContainer.subset(self, dimensions, **kw)
+ # followed by regeneration of the proper geometry.
+ out = super(ImageData, self).subset(dimensions, **kw)
+ #out.geometry = self.recalculate_geometry(dimensions , **kw)
+ out.geometry = self.geometry
+ return out
+
+
+class AcquisitionData(DataContainer):
+ '''DataContainer for holding 2D or 3D sinogram'''
+
+ def __init__(self,
+ array = None,
+ deep_copy=True,
+ dimension_labels=None,
+ **kwargs):
+ self.geometry = None
+ if array is None:
+ if 'geometry' in kwargs.keys():
+ geometry = kwargs['geometry']
+ self.geometry = geometry
+ channels = geometry.channels
+ horiz = geometry.pixel_num_h
+ vert = geometry.pixel_num_v
+ angles = geometry.angles
+ num_of_angles = numpy.shape(angles)[0]
+
+ if dimension_labels is None:
+ if channels > 1:
+ if vert > 1:
+ shape = (channels, num_of_angles , vert, horiz)
+ dim_labels = [AcquisitionGeometry.CHANNEL,
+ AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.VERTICAL,
+ AcquisitionGeometry.HORIZONTAL]
+ else:
+ shape = (channels , num_of_angles, horiz)
+ dim_labels = [AcquisitionGeometry.CHANNEL,
+ AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.HORIZONTAL]
+ else:
+ if vert > 1:
+ shape = (num_of_angles, vert, horiz)
+ dim_labels = [AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.VERTICAL,
+ AcquisitionGeometry.HORIZONTAL
+ ]
+ else:
+ shape = (num_of_angles, horiz)
+ dim_labels = [AcquisitionGeometry.ANGLE,
+ AcquisitionGeometry.HORIZONTAL
+ ]
+
+ dimension_labels = dim_labels
+ else:
+ shape = []
+ for dim in dimension_labels:
+ if dim == AcquisitionGeometry.CHANNEL:
+ shape.append(channels)
+ elif dim == AcquisitionGeometry.ANGLE:
+ shape.append(num_of_angles)
+ elif dim == AcquisitionGeometry.VERTICAL:
+ shape.append(vert)
+ elif dim == AcquisitionGeometry.HORIZONTAL:
+ shape.append(horiz)
+ if len(shape) != len(dimension_labels):
+ raise ValueError('Missing {0} axes.\nExpected{1} got {2}'\
+ .format(
+ len(dimension_labels) - len(shape),
+ dimension_labels, shape)
+ )
+ shape = tuple(shape)
+
+ array = numpy.zeros( shape , dtype=numpy.float32)
+ super(AcquisitionData, self).__init__(array, deep_copy,
+ dimension_labels, **kwargs)
+ else:
+
+ if issubclass(type(array) ,DataContainer):
+ # if the array is a DataContainer get the info from there
+ if not ( array.number_of_dimensions == 2 or \
+ array.number_of_dimensions == 3 or \
+ array.number_of_dimensions == 4):
+ raise ValueError('Number of dimensions are not 2 or 3 or 4: {0}'\
+ .format(array.number_of_dimensions))
+
+ #DataContainer.__init__(self, array.as_array(), deep_copy,
+ # array.dimension_labels, **kwargs)
+ super(AcquisitionData, self).__init__(array.as_array(), deep_copy,
+ array.dimension_labels, **kwargs)
+ elif issubclass(type(array) ,numpy.ndarray):
+ if not ( array.ndim == 2 or array.ndim == 3 or array.ndim == 4 ):
+ raise ValueError(
+ 'Number of dimensions are not 2 or 3 or 4 : {0}'\
+ .format(array.ndim))
+
+ if dimension_labels is None:
+ if array.ndim == 4:
+ dimension_labels = ['channel' ,'angle' , 'vertical' ,
+ 'horizontal']
+ elif array.ndim == 3:
+ dimension_labels = ['angle' , 'vertical' ,
+ 'horizontal']
+ else:
+ dimension_labels = ['angle' ,
+ 'horizontal']
+
+ #DataContainer.__init__(self, array, deep_copy, dimension_labels, **kwargs)
+ super(AcquisitionData, self).__init__(array, deep_copy,
+ dimension_labels, **kwargs)
+
+
+class DataProcessor(object):
+ '''Defines a generic DataContainer processor
+
+ accepts DataContainer as inputs and
+ outputs DataContainer
+ additional attributes can be defined with __setattr__
+ '''
+
+ def __init__(self, **attributes):
+ if not 'store_output' in attributes.keys():
+ attributes['store_output'] = True
+ attributes['output'] = False
+ attributes['runTime'] = -1
+ attributes['mTime'] = datetime.now()
+ attributes['input'] = None
+ for key, value in attributes.items():
+ self.__dict__[key] = value
+
+
+ def __setattr__(self, name, value):
+ if name == 'input':
+ self.set_input(value)
+ elif name in self.__dict__.keys():
+ self.__dict__[name] = value
+ self.__dict__['mTime'] = datetime.now()
+ else:
+ raise KeyError('Attribute {0} not found'.format(name))
+ #pass
+
+ def set_input(self, dataset):
+ if issubclass(type(dataset), DataContainer):
+ if self.check_input(dataset):
+ self.__dict__['input'] = dataset
+ else:
+ raise TypeError("Input type mismatch: got {0} expecting {1}"\
+ .format(type(dataset), DataContainer))
+
+ def check_input(self, dataset):
+ '''Checks parameters of the input DataContainer
+
+ Should raise an Error if the DataContainer does not match expectation, e.g.
+ if the expected input DataContainer is 3D and the Processor expects 2D.
+ '''
+ raise NotImplementedError('Implement basic checks for input DataContainer')
+
+ def get_output(self, out=None):
+ for k,v in self.__dict__.items():
+ if v is None and k != 'output':
+ raise ValueError('Key {0} is None'.format(k))
+ shouldRun = False
+ if self.runTime == -1:
+ shouldRun = True
+ elif self.mTime > self.runTime:
+ shouldRun = True
+
+ # CHECK this
+ if self.store_output and shouldRun:
+ self.runTime = datetime.now()
+ try:
+ self.output = self.process(out=out)
+ return self.output
+ except TypeError as te:
+ self.output = self.process()
+ return self.output
+ self.runTime = datetime.now()
+ try:
+ return self.process(out=out)
+ except TypeError as te:
+ return self.process()
+
+
+ def set_input_processor(self, processor):
+ if issubclass(type(processor), DataProcessor):
+ self.__dict__['input'] = processor
+ else:
+ raise TypeError("Input type mismatch: got {0} expecting {1}"\
+ .format(type(processor), DataProcessor))
+
+ def get_input(self):
+ '''returns the input DataContainer
+
+ It is useful in the case the user has provided a DataProcessor as
+ input
+ '''
+ if issubclass(type(self.input), DataProcessor):
+ dsi = self.input.get_output()
+ else:
+ dsi = self.input
+ return dsi
+
+ def process(self, out=None):
+ raise NotImplementedError('process must be implemented')
+
+
+
+
+class DataProcessor23D(DataProcessor):
+ '''Regularizers DataProcessor
+ '''
+
+ def check_input(self, dataset):
+ '''Checks number of dimensions input DataContainer
+
+ Expected input is 2D or 3D
+ '''
+ if dataset.number_of_dimensions == 2 or \
+ dataset.number_of_dimensions == 3:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+###### Example of DataProcessors
+
+class AX(DataProcessor):
+ '''Example DataProcessor
+ The AXPY routines perform a vector multiplication operation defined as
+
+ y := a*x
+ where:
+
+ a is a scalar
+
+ x a DataContainer.
+ '''
+
+ def __init__(self):
+ kwargs = {'scalar':None,
+ 'input':None,
+ }
+
+ #DataProcessor.__init__(self, **kwargs)
+ super(AX, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ return True
+
+ def process(self, out=None):
+
+ dsi = self.get_input()
+ a = self.scalar
+ if out is None:
+ y = DataContainer( a * dsi.as_array() , True,
+ dimension_labels=dsi.dimension_labels )
+ #self.setParameter(output_dataset=y)
+ return y
+ else:
+ out.fill(a * dsi.as_array())
+
+
+###### Example of DataProcessors
+
+class CastDataContainer(DataProcessor):
+ '''Example DataProcessor
+ Cast a DataContainer array to a different type.
+
+ y := a*x
+ where:
+
+ a is a scalar
+
+ x a DataContainer.
+ '''
+
+ def __init__(self, dtype=None):
+ kwargs = {'dtype':dtype,
+ 'input':None,
+ }
+
+ #DataProcessor.__init__(self, **kwargs)
+ super(CastDataContainer, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ return True
+
+ def process(self, out=None):
+
+ dsi = self.get_input()
+ dtype = self.dtype
+ if out is None:
+ y = numpy.asarray(dsi.as_array(), dtype=dtype)
+
+ return type(dsi)(numpy.asarray(dsi.as_array(), dtype=dtype),
+ dimension_labels=dsi.dimension_labels )
+ else:
+ out.fill(numpy.asarray(dsi.as_array(), dtype=dtype))
+
+
+
+
+
+class PixelByPixelDataProcessor(DataProcessor):
+ '''Example DataProcessor
+
+ This processor applies a python function to each pixel of the DataContainer
+
+ f is a python function
+
+ x a DataSet.
+ '''
+
+ def __init__(self):
+ kwargs = {'pyfunc':None,
+ 'input':None,
+ }
+ #DataProcessor.__init__(self, **kwargs)
+ super(PixelByPixelDataProcessor, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ return True
+
+ def process(self, out=None):
+
+ pyfunc = self.pyfunc
+ dsi = self.get_input()
+
+ eval_func = numpy.frompyfunc(pyfunc,1,1)
+
+
+ y = DataContainer( eval_func( dsi.as_array() ) , True,
+ dimension_labels=dsi.dimension_labels )
+ return y
+
+
+
+
+if __name__ == '__main__':
+ shape = (2,3,4,5)
+ size = shape[0]
+ for i in range(1, len(shape)):
+ size = size * shape[i]
+ #print("a refcount " , sys.getrefcount(a))
+ a = numpy.asarray([i for i in range( size )])
+ print("a refcount " , sys.getrefcount(a))
+ a = numpy.reshape(a, shape)
+ print("a refcount " , sys.getrefcount(a))
+ ds = DataContainer(a, False, ['X', 'Y','Z' ,'W'])
+ print("a refcount " , sys.getrefcount(a))
+ print ("ds label {0}".format(ds.dimension_labels))
+ subset = ['W' ,'X']
+ b = ds.subset( subset )
+ print("a refcount " , sys.getrefcount(a))
+ print ("b label {0} shape {1}".format(b.dimension_labels,
+ numpy.shape(b.as_array())))
+ c = ds.subset(['Z','W','X'])
+ print("a refcount " , sys.getrefcount(a))
+
+ # Create a ImageData sharing the array with c
+ volume0 = ImageData(c.as_array(), False, dimensions = c.dimension_labels)
+ volume1 = ImageData(c, False)
+
+ print ("volume0 {0} volume1 {1}".format(id(volume0.array),
+ id(volume1.array)))
+
+ # Create a ImageData copying the array from c
+ volume2 = ImageData(c.as_array(), dimensions = c.dimension_labels)
+ volume3 = ImageData(c)
+
+ print ("volume2 {0} volume3 {1}".format(id(volume2.array),
+ id(volume3.array)))
+
+ # single number DataSet
+ sn = DataContainer(numpy.asarray([1]))
+
+ ax = AX()
+ ax.scalar = 2
+ ax.set_input(c)
+ #ax.apply()
+ print ("ax in {0} out {1}".format(c.as_array().flatten(),
+ ax.get_output().as_array().flatten()))
+
+ cast = CastDataContainer(dtype=numpy.float32)
+ cast.set_input(c)
+ out = cast.get_output()
+ out *= 0
+ axm = AX()
+ axm.scalar = 0.5
+ axm.set_input_processor(cast)
+ axm.get_output(out)
+ #axm.apply()
+ print ("axm in {0} out {1}".format(c.as_array(), axm.get_output().as_array()))
+
+ # check out in DataSetProcessor
+ #a = numpy.asarray([i for i in range( size )])
+
+
+ # create a PixelByPixelDataProcessor
+
+ #define a python function which will take only one input (the pixel value)
+ pyfunc = lambda x: -x if x > 20 else x
+ clip = PixelByPixelDataProcessor()
+ clip.pyfunc = pyfunc
+ clip.set_input(c)
+ #clip.apply()
+
+ print ("clip in {0} out {1}".format(c.as_array(), clip.get_output().as_array()))
+
+ #dsp = DataProcessor()
+ #dsp.set_input(ds)
+ #dsp.input = a
+ # pipeline
+
+ chain = AX()
+ chain.scalar = 0.5
+ chain.set_input_processor(ax)
+ print ("chain in {0} out {1}".format(ax.get_output().as_array(), chain.get_output().as_array()))
+
+ # testing arithmetic operations
+
+ print (b)
+ print ((b+1))
+ print ((1+b))
+
+ print (b)
+ print ((b*2))
+
+ print (b)
+ print ((2*b))
+
+ print (b)
+ print ((b/2))
+
+ print (b)
+ print ((2/b))
+
+ print (b)
+ print ((b**2))
+
+ print (b)
+ print ((2**b))
+
+ print (type(volume3 + 2))
+
+ s = [i for i in range(3 * 4 * 4)]
+ s = numpy.reshape(numpy.asarray(s), (3,4,4))
+ sino = AcquisitionData( s )
+
+ shape = (4,3,2)
+ a = [i for i in range(2*3*4)]
+ a = numpy.asarray(a)
+ a = numpy.reshape(a, shape)
+ print (numpy.shape(a))
+ ds = DataContainer(a, True, ['X', 'Y','Z'])
+ # this means that I expect the X to be of length 2 ,
+ # y of length 3 and z of length 4
+ subset = ['Y' ,'Z']
+ b0 = ds.subset( subset )
+ print ("shape b 3,2? {0}".format(numpy.shape(b0.as_array())))
+ # expectation on b is that it is
+ # 3x2 cut at z = 0
+
+ subset = ['X' ,'Y']
+ b1 = ds.subset( subset , Z=1)
+ print ("shape b 2,3? {0}".format(numpy.shape(b1.as_array())))
+
+
+
+ # create VolumeData from geometry
+ vgeometry = ImageGeometry(voxel_num_x=2, voxel_num_y=3, channels=2)
+ vol = ImageData(geometry=vgeometry)
+
+ sgeometry = AcquisitionGeometry(dimension=2, angles=numpy.linspace(0, 180, num=20),
+ geom_type='parallel', pixel_num_v=3,
+ pixel_num_h=5 , channels=2)
+ sino = AcquisitionData(geometry=sgeometry)
+ sino2 = sino.clone()
+
+ a0 = numpy.asarray([i for i in range(2*3*4)])
+ a1 = numpy.asarray([2*i for i in range(2*3*4)])
+
+
+ ds0 = DataContainer(numpy.reshape(a0,(2,3,4)))
+ ds1 = DataContainer(numpy.reshape(a1,(2,3,4)))
+
+ numpy.testing.assert_equal(ds0.dot(ds1), a0.dot(a1))
+
+ a2 = numpy.asarray([2*i for i in range(2*3*5)])
+ ds2 = DataContainer(numpy.reshape(a2,(2,3,5)))
+
+# # it should fail if the shape is wrong
+# try:
+# ds2.dot(ds0)
+# self.assertTrue(False)
+# except ValueError as ve:
+# self.assertTrue(True)
+
diff --git a/Wrappers/Python/build/lib/ccpi/io/__init__.py b/Wrappers/Python/build/lib/ccpi/io/__init__.py
new file mode 100644
index 0000000..9233d7a
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/io/__init__.py
@@ -0,0 +1,18 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License. \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/io/reader.py b/Wrappers/Python/build/lib/ccpi/io/reader.py
new file mode 100644
index 0000000..856f5e0
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/io/reader.py
@@ -0,0 +1,500 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev, Edoardo Pasca and Srikanth Nagella
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+'''
+This is a reader module with classes for loading 3D datasets.
+
+@author: Mr. Srikanth Nagella
+'''
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+from ccpi.framework import AcquisitionGeometry
+from ccpi.framework import AcquisitionData
+import numpy as np
+import os
+
+h5pyAvailable = True
+try:
+ from h5py import File as NexusFile
+except:
+ h5pyAvailable = False
+
+pilAvailable = True
+try:
+ from PIL import Image
+except:
+ pilAvailable = False
+
+class NexusReader(object):
+ '''
+ Reader class for loading Nexus files.
+ '''
+
+ def __init__(self, nexus_filename=None):
+ '''
+ This takes in input as filename and loads the data dataset.
+ '''
+ self.flat = None
+ self.dark = None
+ self.angles = None
+ self.geometry = None
+ self.filename = nexus_filename
+ self.key_path = 'entry1/tomo_entry/instrument/detector/image_key'
+ self.data_path = 'entry1/tomo_entry/data/data'
+ self.angle_path = 'entry1/tomo_entry/data/rotation_angle'
+
+ def get_image_keys(self):
+ try:
+ with NexusFile(self.filename,'r') as file:
+ return np.array(file[self.key_path])
+ except KeyError as ke:
+ raise KeyError("get_image_keys: " , ke.args[0] , self.key_path)
+
+
+ def load(self, dimensions=None, image_key_id=0):
+ '''
+ This is generic loading function of flat field, dark field and projection data.
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ image_keys = np.array(file[self.key_path])
+ projections = None
+ if dimensions == None:
+ projections = np.array(file[self.data_path])
+ result = projections[image_keys==image_key_id]
+ return result
+ else:
+ #When dimensions are specified they need to be mapped to image_keys
+ index_array = np.where(image_keys==image_key_id)
+ projection_indexes = index_array[0][dimensions[0]]
+ new_dimensions = list(dimensions)
+ new_dimensions[0]= projection_indexes
+ new_dimensions = tuple(new_dimensions)
+ result = np.array(file[self.data_path][new_dimensions])
+ return result
+ except:
+ print("Error reading nexus file")
+ raise
+
+ def load_projection(self, dimensions=None):
+ '''
+ Loads the projection data from the nexus file.
+ returns: numpy array with projection data
+ '''
+ try:
+ if 0 not in self.get_image_keys():
+ raise ValueError("Projections are not in the data. Data Path " ,
+ self.data_path)
+ except KeyError as ke:
+ raise KeyError(ke.args[0] , self.data_path)
+ return self.load(dimensions, 0)
+
+ def load_flat(self, dimensions=None):
+ '''
+ Loads the flat field data from the nexus file.
+ returns: numpy array with flat field data
+ '''
+ try:
+ if 1 not in self.get_image_keys():
+ raise ValueError("Flats are not in the data. Data Path " ,
+ self.data_path)
+ except KeyError as ke:
+ raise KeyError(ke.args[0] , self.data_path)
+ return self.load(dimensions, 1)
+
+ def load_dark(self, dimensions=None):
+ '''
+ Loads the Dark field data from the nexus file.
+ returns: numpy array with dark field data
+ '''
+ try:
+ if 2 not in self.get_image_keys():
+ raise ValueError("Darks are not in the data. Data Path " ,
+ self.data_path)
+ except KeyError as ke:
+ raise KeyError(ke.args[0] , self.data_path)
+ return self.load(dimensions, 2)
+
+ def get_projection_angles(self):
+ '''
+ This function returns the projection angles
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ angles = np.array(file[self.angle_path],np.float32)
+ image_keys = np.array(file[self.key_path])
+ return angles[image_keys==0]
+ except:
+ print("get_projection_angles Error reading nexus file")
+ raise
+
+
+ def get_sinogram_dimensions(self):
+ '''
+ Return the dimensions of the dataset
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ projections = file[self.data_path]
+ image_keys = np.array(file[self.key_path])
+ dims = list(projections.shape)
+ dims[0] = dims[1]
+ dims[1] = np.sum(image_keys==0)
+ return tuple(dims)
+ except:
+ print("Error reading nexus file")
+ raise
+
+ def get_projection_dimensions(self):
+ '''
+ Return the dimensions of the dataset
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+ with NexusFile(self.filename,'r') as file:
+ try:
+ projections = file[self.data_path]
+ except KeyError as ke:
+ raise KeyError('Error: data path {0} not found\n{1}'\
+ .format(self.data_path,
+ ke.args[0]))
+ #image_keys = np.array(file[self.key_path])
+ image_keys = self.get_image_keys()
+ dims = list(projections.shape)
+ dims[0] = np.sum(image_keys==0)
+ return tuple(dims)
+ except:
+ print("Warning: Error reading image_keys trying accessing data on " , self.data_path)
+ with NexusFile(self.filename,'r') as file:
+ dims = file[self.data_path].shape
+ return tuple(dims)
+
+
+
+ def get_acquisition_data(self, dimensions=None):
+ '''
+ This method load the acquisition data and given dimension and returns an AcquisitionData Object
+ '''
+ data = self.load_projection(dimensions)
+ dims = self.get_projection_dimensions()
+ geometry = AcquisitionGeometry('parallel', '3D',
+ self.get_projection_angles(),
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ pixel_num_v = dims[1],
+ pixel_size_v = 1,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data, geometry=geometry,
+ dimension_labels=['angle','vertical','horizontal'])
+
+ def get_acquisition_data_subset(self, ymin=None, ymax=None):
+ '''
+ This method load the acquisition data and given dimension and returns an AcquisitionData Object
+ '''
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+
+
+ with NexusFile(self.filename,'r') as file:
+ try:
+ dims = self.get_projection_dimensions()
+ except KeyError:
+ pass
+ dims = file[self.data_path].shape
+ if ymin is None and ymax is None:
+ data = np.array(file[self.data_path])
+ else:
+ if ymin is None:
+ ymin = 0
+ if ymax > dims[1]:
+ raise ValueError('ymax out of range')
+ data = np.array(file[self.data_path][:,:ymax,:])
+ elif ymax is None:
+ ymax = dims[1]
+ if ymin < 0:
+ raise ValueError('ymin out of range')
+ data = np.array(file[self.data_path][:,ymin:,:])
+ else:
+ if ymax > dims[1]:
+ raise ValueError('ymax out of range')
+ if ymin < 0:
+ raise ValueError('ymin out of range')
+
+ data = np.array(file[self.data_path]
+ [: , ymin:ymax , :] )
+
+ except:
+ print("Error reading nexus file")
+ raise
+
+
+ try:
+ angles = self.get_projection_angles()
+ except KeyError as ke:
+ n = data.shape[0]
+ angles = np.linspace(0, n, n+1, dtype=np.float32)
+
+ if ymax-ymin > 1:
+
+ geometry = AcquisitionGeometry('parallel', '3D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ pixel_num_v = ymax-ymin,
+ pixel_size_v = 1,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data, False, geometry=geometry,
+ dimension_labels=['angle','vertical','horizontal'])
+ elif ymax-ymin == 1:
+ geometry = AcquisitionGeometry('parallel', '2D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data.squeeze(), False, geometry=geometry,
+ dimension_labels=['angle','horizontal'])
+ def get_acquisition_data_slice(self, y_slice=0):
+ return self.get_acquisition_data_subset(ymin=y_slice , ymax=y_slice+1)
+ def get_acquisition_data_whole(self):
+ with NexusFile(self.filename,'r') as file:
+ try:
+ dims = self.get_projection_dimensions()
+ except KeyError:
+ print ("Warning: ")
+ dims = file[self.data_path].shape
+
+ ymin = 0
+ ymax = dims[1] - 1
+
+ return self.get_acquisition_data_subset(ymin=ymin, ymax=ymax)
+
+
+
+ def list_file_content(self):
+ try:
+ with NexusFile(self.filename,'r') as file:
+ file.visit(print)
+ except:
+ print("Error reading nexus file")
+ raise
+ def get_acquisition_data_batch(self, bmin=None, bmax=None):
+ if not h5pyAvailable:
+ raise Exception("Error: h5py is not installed")
+ if self.filename is None:
+ return
+ try:
+
+
+ with NexusFile(self.filename,'r') as file:
+ try:
+ dims = self.get_projection_dimensions()
+ except KeyError:
+ dims = file[self.data_path].shape
+ if bmin is None or bmax is None:
+ raise ValueError('get_acquisition_data_batch: please specify fastest index batch limits')
+
+ if bmin >= 0 and bmin < bmax and bmax <= dims[0]:
+ data = np.array(file[self.data_path][bmin:bmax])
+ else:
+ raise ValueError('get_acquisition_data_batch: bmin {0}>0 bmax {1}<{2}'.format(bmin, bmax, dims[0]))
+
+ except:
+ print("Error reading nexus file")
+ raise
+
+
+ try:
+ angles = self.get_projection_angles()[bmin:bmax]
+ except KeyError as ke:
+ n = data.shape[0]
+ angles = np.linspace(0, n, n+1, dtype=np.float32)[bmin:bmax]
+
+ if bmax-bmin > 1:
+
+ geometry = AcquisitionGeometry('parallel', '3D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ pixel_num_v = bmax-bmin,
+ pixel_size_v = 1,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data, False, geometry=geometry,
+ dimension_labels=['angle','vertical','horizontal'])
+ elif bmax-bmin == 1:
+ geometry = AcquisitionGeometry('parallel', '2D',
+ angles,
+ pixel_num_h = dims[2],
+ pixel_size_h = 1 ,
+ dist_source_center = None,
+ dist_center_detector = None,
+ channels = 1)
+ return AcquisitionData(data.squeeze(), False, geometry=geometry,
+ dimension_labels=['angle','horizontal'])
+
+
+
+class XTEKReader(object):
+ '''
+ Reader class for loading XTEK files
+ '''
+
+ def __init__(self, xtek_config_filename=None):
+ '''
+ This takes in the xtek config filename and loads the dataset and the
+ required geometry parameters
+ '''
+ self.projections = None
+ self.geometry = {}
+ self.filename = xtek_config_filename
+ self.load()
+
+ def load(self):
+ pixel_num_h = 0
+ pixel_num_v = 0
+ xpixel_size = 0
+ ypixel_size = 0
+ source_x = 0
+ detector_x = 0
+ with open(self.filename) as f:
+ content = f.readlines()
+ content = [x.strip() for x in content]
+ for line in content:
+ if line.startswith("SrcToObject"):
+ source_x = float(line.split('=')[1])
+ elif line.startswith("SrcToDetector"):
+ detector_x = float(line.split('=')[1])
+ elif line.startswith("DetectorPixelsY"):
+ pixel_num_v = int(line.split('=')[1])
+ #self.num_of_vertical_pixels = self.calc_v_alighment(self.num_of_vertical_pixels, self.pixels_per_voxel)
+ elif line.startswith("DetectorPixelsX"):
+ pixel_num_h = int(line.split('=')[1])
+ elif line.startswith("DetectorPixelSizeX"):
+ xpixel_size = float(line.split('=')[1])
+ elif line.startswith("DetectorPixelSizeY"):
+ ypixel_size = float(line.split('=')[1])
+ elif line.startswith("Projections"):
+ self.num_projections = int(line.split('=')[1])
+ elif line.startswith("InitialAngle"):
+ self.initial_angle = float(line.split('=')[1])
+ elif line.startswith("Name"):
+ self.experiment_name = line.split('=')[1]
+ elif line.startswith("Scattering"):
+ self.scattering = float(line.split('=')[1])
+ elif line.startswith("WhiteLevel"):
+ self.white_level = float(line.split('=')[1])
+ elif line.startswith("MaskRadius"):
+ self.mask_radius = float(line.split('=')[1])
+
+ #Read Angles
+ angles = self.read_angles()
+ self.geometry = AcquisitionGeometry('cone', '3D', angles, pixel_num_h, xpixel_size, pixel_num_v, ypixel_size, -1 * source_x,
+ detector_x - source_x,
+ )
+
+ def read_angles(self):
+ """
+ Read the angles file .ang or _ctdata.txt file and returns the angles
+ as an numpy array.
+ """
+ input_path = os.path.dirname(self.filename)
+ angles_ctdata_file = os.path.join(input_path, '_ctdata.txt')
+ angles_named_file = os.path.join(input_path, self.experiment_name+'.ang')
+ angles = np.zeros(self.num_projections,dtype='f')
+ #look for _ctdata.txt
+ if os.path.exists(angles_ctdata_file):
+ #read txt file with angles
+ with open(angles_ctdata_file) as f:
+ content = f.readlines()
+ #skip firt three lines
+ #read the middle value of 3 values in each line as angles in degrees
+ index = 0
+ for line in content[3:]:
+ self.angles[index]=float(line.split(' ')[1])
+ index+=1
+ angles = np.deg2rad(self.angles+self.initial_angle);
+ elif os.path.exists(angles_named_file):
+ #read the angles file which is text with first line as header
+ with open(angles_named_file) as f:
+ content = f.readlines()
+ #skip first line
+ index = 0
+ for line in content[1:]:
+ angles[index] = float(line.split(':')[1])
+ index+=1
+ angles = np.flipud(angles+self.initial_angle) #angles are in the reverse order
+ else:
+ raise RuntimeError("Can't find angles file")
+ return angles
+
+ def load_projection(self, dimensions=None):
+ '''
+ This method reads the projection images from the directory and returns a numpy array
+ '''
+ if not pilAvailable:
+ raise('Image library pillow is not installed')
+ if dimensions != None:
+ raise('Extracting subset of data is not implemented')
+ input_path = os.path.dirname(self.filename)
+ pixels = np.zeros((self.num_projections, self.geometry.pixel_num_h, self.geometry.pixel_num_v), dtype='float32')
+ for i in range(1, self.num_projections+1):
+ im = Image.open(os.path.join(input_path,self.experiment_name+"_%04d"%i+".tif"))
+ pixels[i-1,:,:] = np.fliplr(np.transpose(np.array(im))) ##Not sure this is the correct way to populate the image
+
+ #normalising the data
+ #TODO: Move this to a processor
+ pixels = pixels - (self.white_level*self.scattering)/100.0
+ pixels[pixels < 0.0] = 0.000001 # all negative values to approximately 0 as the std log of zero and non negative number is not defined
+ return pixels
+
+ def get_acquisition_data(self, dimensions=None):
+ '''
+ This method load the acquisition data and given dimension and returns an AcquisitionData Object
+ '''
+ data = self.load_projection(dimensions)
+ return AcquisitionData(data, geometry=self.geometry)
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/__init__.py b/Wrappers/Python/build/lib/ccpi/optimisation/__init__.py
new file mode 100644
index 0000000..cf2d93d
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/__init__.py
@@ -0,0 +1,18 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License. \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py
new file mode 100644
index 0000000..ed95c3f
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/Algorithm.py
@@ -0,0 +1,158 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2019 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import time
+from numbers import Integral
+
+class Algorithm(object):
+ '''Base class for iterative algorithms
+
+ provides the minimal infrastructure.
+ Algorithms are iterables so can be easily run in a for loop. They will
+ stop as soon as the stop cryterion is met.
+ The user is required to implement the set_up, __init__, update and
+ and update_objective methods
+
+ A courtesy method run is available to run n iterations. The method accepts
+ a callback function that receives the current iteration number and the actual objective
+ value and can be used to trigger print to screens and other user interactions. The run
+ method will stop when the stopping cryterion is met.
+ '''
+
+ def __init__(self):
+ '''Constructor
+
+ Set the minimal number of parameters:
+ iteration: current iteration number
+ max_iteration: maximum number of iterations
+ memopt: whether to use memory optimisation ()
+ timing: list to hold the times it took to run each iteration
+ update_objectice_interval: the interval every which we would save the current
+ objective. 1 means every iteration, 2 every 2 iteration
+ and so forth. This is by default 1 and should be increased
+ when evaluating the objective is computationally expensive.
+ '''
+ self.iteration = 0
+ self.__max_iteration = 0
+ self.__loss = []
+ self.memopt = False
+ self.timing = []
+ self.update_objective_interval = 1
+ def set_up(self, *args, **kwargs):
+ '''Set up the algorithm'''
+ raise NotImplementedError()
+ def update(self):
+ '''A single iteration of the algorithm'''
+ raise NotImplementedError()
+
+ def should_stop(self):
+ '''default stopping cryterion: number of iterations
+
+ The user can change this in concrete implementatition of iterative algorithms.'''
+ return self.max_iteration_stop_cryterion()
+
+ def max_iteration_stop_cryterion(self):
+ '''default stop cryterion for iterative algorithm: max_iteration reached'''
+ return self.iteration >= self.max_iteration
+ def __iter__(self):
+ '''Algorithm is an iterable'''
+ return self
+ def next(self):
+ '''Algorithm is an iterable
+
+ python2 backwards compatibility'''
+ return self.__next__()
+ def __next__(self):
+ '''Algorithm is an iterable
+
+ calling this method triggers update and update_objective
+ '''
+ if self.should_stop():
+ raise StopIteration()
+ else:
+ time0 = time.time()
+ self.update()
+ self.timing.append( time.time() - time0 )
+ if self.iteration % self.update_objective_interval == 0:
+ self.update_objective()
+ self.iteration += 1
+ def get_output(self):
+ '''Returns the solution found'''
+ return self.x
+ def get_last_loss(self):
+ '''Returns the last stored value of the loss function
+
+ if update_objective_interval is 1 it is the value of the objective at the current
+ iteration. If update_objective_interval > 1 it is the last stored value.
+ '''
+ return self.__loss[-1]
+ def get_last_objective(self):
+ '''alias to get_last_loss'''
+ return self.get_last_loss()
+ def update_objective(self):
+ '''calculates the objective with the current solution'''
+ raise NotImplementedError()
+ @property
+ def loss(self):
+ '''returns the list of the values of the objective during the iteration
+
+ The length of this list may be shorter than the number of iterations run when
+ the update_objective_interval > 1
+ '''
+ return self.__loss
+ @property
+ def objective(self):
+ '''alias of loss'''
+ return self.loss
+ @property
+ def max_iteration(self):
+ '''gets the maximum number of iterations'''
+ return self.__max_iteration
+ @max_iteration.setter
+ def max_iteration(self, value):
+ '''sets the maximum number of iterations'''
+ assert isinstance(value, int)
+ self.__max_iteration = value
+ @property
+ def update_objective_interval(self):
+ return self.__update_objective_interval
+ @update_objective_interval.setter
+ def update_objective_interval(self, value):
+ if isinstance(value, Integral):
+ if value >= 1:
+ self.__update_objective_interval = value
+ else:
+ raise ValueError('Update objective interval must be an integer >= 1')
+ else:
+ raise ValueError('Update objective interval must be an integer >= 1')
+ def run(self, iterations, verbose=True, callback=None):
+ '''run n iterations and update the user with the callback if specified'''
+ if self.should_stop():
+ print ("Stop cryterion has been reached.")
+ i = 0
+ for _ in self:
+ if verbose and self.iteration % self.update_objective_interval == 0:
+ print ("Iteration {}/{}, objective {}".format(self.iteration,
+ self.max_iteration, self.get_last_objective()) )
+ else:
+ if callback is not None:
+ callback(self.iteration, self.get_last_objective())
+ i += 1
+ if i == iterations:
+ break
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/CGLS.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/CGLS.py
new file mode 100644
index 0000000..7194eb8
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/CGLS.py
@@ -0,0 +1,87 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Created on Thu Feb 21 11:11:23 2019
+
+@author: ofn77899
+"""
+
+from ccpi.optimisation.algorithms import Algorithm
+#from collections.abc import Iterable
+class CGLS(Algorithm):
+
+ '''Conjugate Gradient Least Squares algorithm
+
+ Parameters:
+ x_init: initial guess
+ operator: operator for forward/backward projections
+ data: data to operate on
+ '''
+ def __init__(self, **kwargs):
+ super(CGLS, self).__init__()
+ self.x = kwargs.get('x_init', None)
+ self.operator = kwargs.get('operator', None)
+ self.data = kwargs.get('data', None)
+ if self.x is not None and self.operator is not None and \
+ self.data is not None:
+ print ("Calling from creator")
+ self.set_up(x_init =kwargs['x_init'],
+ operator=kwargs['operator'],
+ data =kwargs['data'])
+
+ def set_up(self, x_init, operator , data ):
+
+ self.r = data.copy()
+ self.x = x_init.copy()
+
+ self.operator = operator
+ self.d = operator.adjoint(self.r)
+
+
+ self.normr2 = self.d.squared_norm()
+ #if isinstance(self.normr2, Iterable):
+ # self.normr2 = sum(self.normr2)
+ #self.normr2 = numpy.sqrt(self.normr2)
+ #print ("set_up" , self.normr2)
+
+ def update(self):
+
+ Ad = self.operator.direct(self.d)
+ #norm = (Ad*Ad).sum()
+ #if isinstance(norm, Iterable):
+ # norm = sum(norm)
+ norm = Ad.squared_norm()
+
+ alpha = self.normr2/norm
+ self.x += (self.d * alpha)
+ self.r -= (Ad * alpha)
+ s = self.operator.adjoint(self.r)
+
+ normr2_new = s.squared_norm()
+ #if isinstance(normr2_new, Iterable):
+ # normr2_new = sum(normr2_new)
+ #normr2_new = numpy.sqrt(normr2_new)
+ #print (normr2_new)
+
+ beta = normr2_new/self.normr2
+ self.normr2 = normr2_new
+ self.d = s + beta*self.d
+
+ def update_objective(self):
+ self.loss.append(self.r.squared_norm()) \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FBPD.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FBPD.py
new file mode 100644
index 0000000..445ba7a
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FBPD.py
@@ -0,0 +1,86 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2019 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Created on Thu Feb 21 11:09:03 2019
+
+@author: ofn77899
+"""
+
+from ccpi.optimisation.algorithms import Algorithm
+from ccpi.optimisation.functions import ZeroFun
+
+class FBPD(Algorithm):
+ '''FBPD Algorithm
+
+ Parameters:
+ x_init: initial guess
+ f: constraint
+ g: data fidelity
+ h: regularizer
+ opt: additional algorithm
+ '''
+ constraint = None
+ data_fidelity = None
+ regulariser = None
+ def __init__(self, **kwargs):
+ pass
+ def set_up(self, x_init, operator=None, constraint=None, data_fidelity=None,\
+ regulariser=None, opt=None):
+
+ # default inputs
+ if constraint is None:
+ self.constraint = ZeroFun()
+ else:
+ self.constraint = constraint
+ if data_fidelity is None:
+ data_fidelity = ZeroFun()
+ else:
+ self.data_fidelity = data_fidelity
+ if regulariser is None:
+ self.regulariser = ZeroFun()
+ else:
+ self.regulariser = regulariser
+
+ # algorithmic parameters
+
+
+ # step-sizes
+ self.tau = 2 / (self.data_fidelity.L + 2)
+ self.sigma = (1/self.tau - self.data_fidelity.L/2) / self.regulariser.L
+
+ self.inv_sigma = 1/self.sigma
+
+ # initialization
+ self.x = x_init
+ self.y = operator.direct(self.x)
+
+
+ def update(self):
+
+ # primal forward-backward step
+ x_old = self.x
+ self.x = self.x - self.tau * ( self.data_fidelity.grad(self.x) + self.operator.adjoint(self.y) )
+ self.x = self.constraint.prox(self.x, self.tau);
+
+ # dual forward-backward step
+ self.y = self.y + self.sigma * self.operator.direct(2*self.x - x_old);
+ self.y = self.y - self.sigma * self.regulariser.prox(self.inv_sigma*self.y, self.inv_sigma);
+
+ # time and criterion
+ self.loss = self.constraint(self.x) + self.data_fidelity(self.x) + self.regulariser(self.operator.direct(self.x))
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FISTA.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FISTA.py
new file mode 100644
index 0000000..93ba178
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/FISTA.py
@@ -0,0 +1,121 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 21 11:07:30 2019
+
+@author: ofn77899
+"""
+
+from ccpi.optimisation.algorithms import Algorithm
+from ccpi.optimisation.functions import ZeroFun
+import numpy
+
+class FISTA(Algorithm):
+ '''Fast Iterative Shrinkage-Thresholding Algorithm
+
+ Beck, A. and Teboulle, M., 2009. A fast iterative shrinkage-thresholding
+ algorithm for linear inverse problems.
+ SIAM journal on imaging sciences,2(1), pp.183-202.
+
+ Parameters:
+ x_init: initial guess
+ f: data fidelity
+ g: regularizer
+ h:
+ opt: additional algorithm
+ '''
+
+ def __init__(self, **kwargs):
+ '''initialisation can be done at creation time if all
+ proper variables are passed or later with set_up'''
+ super(FISTA, self).__init__()
+ self.f = None
+ self.g = None
+ self.invL = None
+ self.t_old = 1
+ args = ['x_init', 'f', 'g', 'opt']
+ for k,v in kwargs.items():
+ if k in args:
+ args.pop(args.index(k))
+ if len(args) == 0:
+ return self.set_up(kwargs['x_init'],
+ f=kwargs['f'],
+ g=kwargs['g'],
+ opt=kwargs['opt'])
+
+ def set_up(self, x_init, f=None, g=None, opt=None):
+
+ # default inputs
+ if f is None:
+ self.f = ZeroFun()
+ else:
+ self.f = f
+ if g is None:
+ g = ZeroFun()
+ self.g = g
+ else:
+ self.g = g
+
+ # algorithmic parameters
+ if opt is None:
+ opt = {'tol': 1e-4, 'memopt':False}
+
+ self.tol = opt['tol'] if 'tol' in opt.keys() else 1e-4
+ memopt = opt['memopt'] if 'memopt' in opt.keys() else False
+ self.memopt = memopt
+
+ # initialization
+ if memopt:
+ self.y = x_init.clone()
+ self.x_old = x_init.clone()
+ self.x = x_init.clone()
+ self.u = x_init.clone()
+ else:
+ self.x_old = x_init.copy()
+ self.y = x_init.copy()
+
+ #timing = numpy.zeros(max_iter)
+ #criter = numpy.zeros(max_iter)
+
+
+ self.invL = 1/f.L
+
+ self.t_old = 1
+
+ def update(self):
+ # algorithm loop
+ #for it in range(0, max_iter):
+
+ if self.memopt:
+ # u = y - invL*f.grad(y)
+ # store the result in x_old
+ self.f.gradient(self.y, out=self.u)
+ self.u.__imul__( -self.invL )
+ self.u.__iadd__( self.y )
+ # x = g.prox(u,invL)
+ self.g.proximal(self.u, self.invL, out=self.x)
+
+ self.t = 0.5*(1 + numpy.sqrt(1 + 4*(self.t_old**2)))
+
+ # y = x + (t_old-1)/t*(x-x_old)
+ self.x.subtract(self.x_old, out=self.y)
+ self.y.__imul__ ((self.t_old-1)/self.t)
+ self.y.__iadd__( self.x )
+
+ self.x_old.fill(self.x)
+ self.t_old = self.t
+
+
+ else:
+ u = self.y - self.invL*self.f.grad(self.y)
+
+ self.x = self.g.prox(u,self.invL)
+
+ self.t = 0.5*(1 + numpy.sqrt(1 + 4*(self.t_old**2)))
+
+ self.y = self.x + (self.t_old-1)/self.t*(self.x-self.x_old)
+
+ self.x_old = self.x.copy()
+ self.t_old = self.t
+
+ def update_objective(self):
+ self.loss.append( self.f(self.x) + self.g(self.x) ) \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/GradientDescent.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/GradientDescent.py
new file mode 100644
index 0000000..f1e4132
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/GradientDescent.py
@@ -0,0 +1,76 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2019 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Created on Thu Feb 21 11:05:09 2019
+
+@author: ofn77899
+"""
+from ccpi.optimisation.algorithms import Algorithm
+
+class GradientDescent(Algorithm):
+ '''Implementation of Gradient Descent algorithm
+ '''
+
+ def __init__(self, **kwargs):
+ '''initialisation can be done at creation time if all
+ proper variables are passed or later with set_up'''
+ super(GradientDescent, self).__init__()
+ self.x = None
+ self.rate = 0
+ self.objective_function = None
+ self.regulariser = None
+ args = ['x_init', 'objective_function', 'rate']
+ for k,v in kwargs.items():
+ if k in args:
+ args.pop(args.index(k))
+ if len(args) == 0:
+ return self.set_up(x_init=kwargs['x_init'],
+ objective_function=kwargs['objective_function'],
+ rate=kwargs['rate'])
+
+ def should_stop(self):
+ '''stopping cryterion, currently only based on number of iterations'''
+ return self.iteration >= self.max_iteration
+
+ def set_up(self, x_init, objective_function, rate):
+ '''initialisation of the algorithm'''
+ self.x = x_init.copy()
+ self.objective_function = objective_function
+ self.rate = rate
+ self.loss.append(objective_function(x_init))
+ self.iteration = 0
+ try:
+ self.memopt = self.objective_function.memopt
+ except AttributeError as ae:
+ self.memopt = False
+ if self.memopt:
+ self.x_update = x_init.copy()
+
+ def update(self):
+ '''Single iteration'''
+ if self.memopt:
+ self.objective_function.gradient(self.x, out=self.x_update)
+ self.x_update *= -self.rate
+ self.x += self.x_update
+ else:
+ self.x += -self.rate * self.objective_function.gradient(self.x)
+
+ def update_objective(self):
+ self.loss.append(self.objective_function(self.x))
+ \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py
new file mode 100644
index 0000000..043fe38
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/PDHG.py
@@ -0,0 +1,82 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Mon Feb 4 16:18:06 2019
+
+@author: evangelos
+"""
+from ccpi.optimisation.algorithms import Algorithm
+from ccpi.framework import ImageData
+import numpy as np
+#import matplotlib.pyplot as plt
+import time
+from ccpi.optimisation.operators import BlockOperator
+from ccpi.framework import BlockDataContainer
+
+class PDHG(Algorithm):
+ '''Primal Dual Hybrid Gradient'''
+
+ def __init__(self, **kwargs):
+ super(PDHG, self).__init__()
+ self.f = kwargs.get('f', None)
+ self.operator = kwargs.get('operator', None)
+ self.g = kwargs.get('g', None)
+ self.tau = kwargs.get('tau', None)
+ self.sigma = kwargs.get('sigma', None)
+
+ if self.f is not None and self.operator is not None and \
+ self.g is not None:
+ print ("Calling from creator")
+ self.set_up(self.f,
+ self.operator,
+ self.g,
+ self.tau,
+ self.sigma)
+
+ def set_up(self, f, g, operator, tau = None, sigma = None, opt = None, **kwargs):
+ # algorithmic parameters
+
+ if sigma is None and tau is None:
+ raise ValueError('Need sigma*tau||K||^2<1')
+
+
+ self.x_old = self.operator.domain_geometry().allocate()
+ self.y_old = self.operator.range_geometry().allocate()
+
+ self.xbar = self.x_old.copy()
+ #x_tmp = x_old
+ self.x = self.x_old.copy()
+ self.y = self.y_old.copy()
+ #y_tmp = y_old
+ #y = y_tmp
+
+ # relaxation parameter
+ self.theta = 1
+
+ def update(self):
+ # Gradient descent, Dual problem solution
+ self.y_old += self.sigma * self.operator.direct(self.xbar)
+ self.y = self.f.proximal_conjugate(self.y_old, self.sigma)
+
+ # Gradient ascent, Primal problem solution
+ self.x_old -= self.tau * self.operator.adjoint(self.y)
+ self.x = self.g.proximal(self.x_old, self.tau)
+
+ #Update
+ #xbar = x + theta * (x - x_old)
+ self.xbar.fill(self.x)
+ self.xbar -= self.x_old
+ self.xbar *= self.theta
+ self.xbar += self.x
+
+ self.x_old.fill(self.x)
+ self.y_old.fill(self.y)
+ #self.y_old = y.copy()
+ #self.y = self.y_old
+
+ def update_objective(self):
+ self.loss.append([self.f(self.operator.direct(self.x)) + self.g(self.x),
+ -(self.f.convex_conjugate(self.y) + self.g.convex_conjugate(- 1 * self.operator.adjoint(self.y)))
+ ])
+
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/__init__.py b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/__init__.py
new file mode 100644
index 0000000..443bc78
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algorithms/__init__.py
@@ -0,0 +1,30 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2019 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Created on Thu Feb 21 11:03:13 2019
+
+@author: ofn77899
+"""
+
+from .Algorithm import Algorithm
+from .CGLS import CGLS
+from .GradientDescent import GradientDescent
+from .FISTA import FISTA
+from .FBPD import FBPD
+from .PDHG import PDHG
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/algs.py b/Wrappers/Python/build/lib/ccpi/optimisation/algs.py
new file mode 100644
index 0000000..6b6ae2c
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/algs.py
@@ -0,0 +1,319 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy
+import time
+
+from ccpi.optimisation.functions import Function
+from ccpi.optimisation.functions import ZeroFun
+from ccpi.framework import ImageData
+from ccpi.framework import AcquisitionData
+from ccpi.optimisation.spdhg import spdhg
+from ccpi.optimisation.spdhg import KullbackLeibler
+from ccpi.optimisation.spdhg import KullbackLeiblerConvexConjugate
+
+def FISTA(x_init, f=None, g=None, opt=None):
+ '''Fast Iterative Shrinkage-Thresholding Algorithm
+
+ Beck, A. and Teboulle, M., 2009. A fast iterative shrinkage-thresholding
+ algorithm for linear inverse problems.
+ SIAM journal on imaging sciences,2(1), pp.183-202.
+
+ Parameters:
+ x_init: initial guess
+ f: data fidelity
+ g: regularizer
+ h:
+ opt: additional algorithm
+ '''
+ # default inputs
+ if f is None: f = ZeroFun()
+ if g is None: g = ZeroFun()
+
+ # algorithmic parameters
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000, 'memopt':False}
+
+ max_iter = opt['iter'] if 'iter' in opt.keys() else 1000
+ tol = opt['tol'] if 'tol' in opt.keys() else 1e-4
+ memopt = opt['memopt'] if 'memopt' in opt.keys() else False
+
+
+ # initialization
+ if memopt:
+ y = x_init.clone()
+ x_old = x_init.clone()
+ x = x_init.clone()
+ u = x_init.clone()
+ else:
+ x_old = x_init
+ y = x_init;
+
+ timing = numpy.zeros(max_iter)
+ criter = numpy.zeros(max_iter)
+
+ invL = 1/f.L
+
+ t_old = 1
+
+ c = f(x_init) + g(x_init)
+
+ # algorithm loop
+ for it in range(0, max_iter):
+
+ time0 = time.time()
+ if memopt:
+ # u = y - invL*f.grad(y)
+ # store the result in x_old
+ f.gradient(y, out=u)
+ u.__imul__( -invL )
+ u.__iadd__( y )
+ # x = g.prox(u,invL)
+ g.proximal(u, invL, out=x)
+
+ t = 0.5*(1 + numpy.sqrt(1 + 4*(t_old**2)))
+
+ # y = x + (t_old-1)/t*(x-x_old)
+ x.subtract(x_old, out=y)
+ y.__imul__ ((t_old-1)/t)
+ y.__iadd__( x )
+
+ x_old.fill(x)
+ t_old = t
+
+
+ else:
+ u = y - invL*f.grad(y)
+
+ x = g.prox(u,invL)
+
+ t = 0.5*(1 + numpy.sqrt(1 + 4*(t_old**2)))
+
+ y = x + (t_old-1)/t*(x-x_old)
+
+ x_old = x.copy()
+ t_old = t
+
+ # time and criterion
+ timing[it] = time.time() - time0
+ criter[it] = f(x) + g(x);
+
+ # stopping rule
+ #if np.linalg.norm(x - x_old) < tol * np.linalg.norm(x_old) and it > 10:
+ # break
+
+ #print(it, 'out of', 10, 'iterations', end='\r');
+
+ #criter = criter[0:it+1];
+ timing = numpy.cumsum(timing[0:it+1]);
+
+ return x, it, timing, criter
+
+def FBPD(x_init, operator=None, constraint=None, data_fidelity=None,\
+ regulariser=None, opt=None):
+ '''FBPD Algorithm
+
+ Parameters:
+ x_init: initial guess
+ f: constraint
+ g: data fidelity
+ h: regularizer
+ opt: additional algorithm
+ '''
+ # default inputs
+ if constraint is None: constraint = ZeroFun()
+ if data_fidelity is None: data_fidelity = ZeroFun()
+ if regulariser is None: regulariser = ZeroFun()
+
+ # algorithmic parameters
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000}
+ else:
+ try:
+ max_iter = opt['iter']
+ except KeyError as ke:
+ opt[ke] = 1000
+ try:
+ opt['tol'] = 1000
+ except KeyError as ke:
+ opt[ke] = 1e-4
+ tol = opt['tol']
+ max_iter = opt['iter']
+ memopt = opt['memopts'] if 'memopts' in opt.keys() else False
+
+ # step-sizes
+ tau = 2 / (data_fidelity.L + 2)
+ sigma = (1/tau - data_fidelity.L/2) / regulariser.L
+ inv_sigma = 1/sigma
+
+ # initialization
+ x = x_init
+ y = operator.direct(x);
+
+ timing = numpy.zeros(max_iter)
+ criter = numpy.zeros(max_iter)
+
+
+
+
+ # algorithm loop
+ for it in range(0, max_iter):
+
+ t = time.time()
+
+ # primal forward-backward step
+ x_old = x;
+ x = x - tau * ( data_fidelity.grad(x) + operator.adjoint(y) );
+ x = constraint.prox(x, tau);
+
+ # dual forward-backward step
+ y = y + sigma * operator.direct(2*x - x_old);
+ y = y - sigma * regulariser.prox(inv_sigma*y, inv_sigma);
+
+ # time and criterion
+ timing[it] = time.time() - t
+ criter[it] = constraint(x) + data_fidelity(x) + regulariser(operator.direct(x))
+
+ # stopping rule
+ #if np.linalg.norm(x - x_old) < tol * np.linalg.norm(x_old) and it > 10:
+ # break
+
+ criter = criter[0:it+1]
+ timing = numpy.cumsum(timing[0:it+1])
+
+ return x, it, timing, criter
+
+def CGLS(x_init, operator , data , opt=None):
+ '''Conjugate Gradient Least Squares algorithm
+
+ Parameters:
+ x_init: initial guess
+ operator: operator for forward/backward projections
+ data: data to operate on
+ opt: additional algorithm
+ '''
+
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000}
+ else:
+ try:
+ max_iter = opt['iter']
+ except KeyError as ke:
+ opt[ke] = 1000
+ try:
+ opt['tol'] = 1000
+ except KeyError as ke:
+ opt[ke] = 1e-4
+ tol = opt['tol']
+ max_iter = opt['iter']
+
+ r = data.copy()
+ x = x_init.copy()
+
+ d = operator.adjoint(r)
+
+ normr2 = (d**2).sum()
+
+ timing = numpy.zeros(max_iter)
+ criter = numpy.zeros(max_iter)
+
+ # algorithm loop
+ for it in range(0, max_iter):
+
+ t = time.time()
+
+ Ad = operator.direct(d)
+ alpha = normr2/( (Ad**2).sum() )
+ x = x + alpha*d
+ r = r - alpha*Ad
+ s = operator.adjoint(r)
+
+ normr2_new = (s**2).sum()
+ beta = normr2_new/normr2
+ normr2 = normr2_new
+ d = s + beta*d
+
+ # time and criterion
+ timing[it] = time.time() - t
+ criter[it] = (r**2).sum()
+
+ return x, it, timing, criter
+
+def SIRT(x_init, operator , data , opt=None, constraint=None):
+ '''Simultaneous Iterative Reconstruction Technique
+
+ Parameters:
+ x_init: initial guess
+ operator: operator for forward/backward projections
+ data: data to operate on
+ opt: additional algorithm
+ constraint: func of Indicator type specifying convex constraint.
+ '''
+
+ if opt is None:
+ opt = {'tol': 1e-4, 'iter': 1000}
+ else:
+ try:
+ max_iter = opt['iter']
+ except KeyError as ke:
+ opt[ke] = 1000
+ try:
+ opt['tol'] = 1000
+ except KeyError as ke:
+ opt[ke] = 1e-4
+ tol = opt['tol']
+ max_iter = opt['iter']
+
+ # Set default constraint to unconstrained
+ if constraint==None:
+ constraint = Function()
+
+ x = x_init.clone()
+
+ timing = numpy.zeros(max_iter)
+ criter = numpy.zeros(max_iter)
+
+ # Relaxation parameter must be strictly between 0 and 2. For now fix at 1.0
+ relax_par = 1.0
+
+ # Set up scaling matrices D and M.
+ im1 = ImageData(geometry=x_init.geometry)
+ im1.array[:] = 1.0
+ M = 1/operator.direct(im1)
+ del im1
+ aq1 = AcquisitionData(geometry=M.geometry)
+ aq1.array[:] = 1.0
+ D = 1/operator.adjoint(aq1)
+ del aq1
+
+ # algorithm loop
+ for it in range(0, max_iter):
+ t = time.time()
+ r = data - operator.direct(x)
+
+ x = constraint.prox(x + relax_par * (D*operator.adjoint(M*r)),None)
+
+ timing[it] = time.time() - t
+ if it > 0:
+ criter[it-1] = (r**2).sum()
+
+ r = data - operator.direct(x)
+ criter[it] = (r**2).sum()
+ return x, it, timing, criter
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/funcs.py b/Wrappers/Python/build/lib/ccpi/optimisation/funcs.py
new file mode 100644
index 0000000..efc465c
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/funcs.py
@@ -0,0 +1,272 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from ccpi.optimisation.ops import Identity, FiniteDiff2D
+import numpy
+from ccpi.framework import DataContainer
+import warnings
+from ccpi.optimisation.functions import Function
+def isSizeCorrect(data1 ,data2):
+ if issubclass(type(data1), DataContainer) and \
+ issubclass(type(data2), DataContainer):
+ # check dimensionality
+ if data1.check_dimensions(data2):
+ return True
+ elif issubclass(type(data1) , numpy.ndarray) and \
+ issubclass(type(data2) , numpy.ndarray):
+ return data1.shape == data2.shape
+ else:
+ raise ValueError("{0}: getting two incompatible types: {1} {2}"\
+ .format('Function', type(data1), type(data2)))
+ return False
+class Norm2(Function):
+
+ def __init__(self,
+ gamma=1.0,
+ direction=None):
+ super(Norm2, self).__init__()
+ self.gamma = gamma;
+ self.direction = direction;
+
+ def __call__(self, x, out=None):
+
+ if out is None:
+ xx = numpy.sqrt(numpy.sum(numpy.square(x.as_array()), self.direction,
+ keepdims=True))
+ else:
+ if isSizeCorrect(out, x):
+ # check dimensionality
+ if issubclass(type(out), DataContainer):
+ arr = out.as_array()
+ numpy.square(x.as_array(), out=arr)
+ xx = numpy.sqrt(numpy.sum(arr, self.direction, keepdims=True))
+
+ elif issubclass(type(out) , numpy.ndarray):
+ numpy.square(x.as_array(), out=out)
+ xx = numpy.sqrt(numpy.sum(out, self.direction, keepdims=True))
+ else:
+ raise ValueError ('Wrong size: x{0} out{1}'.format(x.shape,out.shape) )
+
+ p = numpy.sum(self.gamma*xx)
+
+ return p
+
+ def prox(self, x, tau):
+
+ xx = numpy.sqrt(numpy.sum( numpy.square(x.as_array()), self.direction,
+ keepdims=True ))
+ xx = numpy.maximum(0, 1 - tau*self.gamma / xx)
+ p = x.as_array() * xx
+
+ return type(x)(p,geometry=x.geometry)
+ def proximal(self, x, tau, out=None):
+ if out is None:
+ return self.prox(x,tau)
+ else:
+ if isSizeCorrect(out, x):
+ # check dimensionality
+ if issubclass(type(out), DataContainer):
+ numpy.square(x.as_array(), out = out.as_array())
+ xx = numpy.sqrt(numpy.sum( out.as_array() , self.direction,
+ keepdims=True ))
+ xx = numpy.maximum(0, 1 - tau*self.gamma / xx)
+ x.multiply(xx, out= out.as_array())
+
+
+ elif issubclass(type(out) , numpy.ndarray):
+ numpy.square(x.as_array(), out=out)
+ xx = numpy.sqrt(numpy.sum(out, self.direction, keepdims=True))
+
+ xx = numpy.maximum(0, 1 - tau*self.gamma / xx)
+ x.multiply(xx, out= out)
+ else:
+ raise ValueError ('Wrong size: x{0} out{1}'.format(x.shape,out.shape) )
+
+
+class TV2D(Norm2):
+
+ def __init__(self, gamma):
+ super(TV2D,self).__init__(gamma, 0)
+ self.op = FiniteDiff2D()
+ self.L = self.op.get_max_sing_val()
+
+
+# Define a class for squared 2-norm
+class Norm2sq(Function):
+ '''
+ f(x) = c*||A*x-b||_2^2
+
+ which has
+
+ grad[f](x) = 2*c*A^T*(A*x-b)
+
+ and Lipschitz constant
+
+ L = 2*c*||A||_2^2 = 2*s1(A)^2
+
+ where s1(A) is the largest singular value of A.
+
+ '''
+
+ def __init__(self,A,b,c=1.0,memopt=False):
+ super(Norm2sq, self).__init__()
+
+ self.A = A # Should be an operator, default identity
+ self.b = b # Default zero DataSet?
+ self.c = c # Default 1.
+ if memopt:
+ try:
+ self.range_tmp = A.range_geometry().allocate()
+ self.domain_tmp = A.domain_geometry().allocate()
+ self.memopt = True
+ except NameError as ne:
+ warnings.warn(str(ne))
+ self.memopt = False
+ except NotImplementedError as nie:
+ print (nie)
+ warnings.warn(str(nie))
+ self.memopt = False
+ else:
+ self.memopt = False
+
+ # Compute the Lipschitz parameter from the operator if possible
+ # Leave it initialised to None otherwise
+ try:
+ self.L = 2.0*self.c*(self.A.norm()**2)
+ except AttributeError as ae:
+ pass
+ except NotImplementedError as noe:
+ pass
+
+ #def grad(self,x):
+ # return self.gradient(x, out=None)
+
+ def __call__(self,x):
+ #return self.c* np.sum(np.square((self.A.direct(x) - self.b).ravel()))
+ #if out is None:
+ # return self.c*( ( (self.A.direct(x)-self.b)**2).sum() )
+ #else:
+ y = self.A.direct(x)
+ y.__isub__(self.b)
+ #y.__imul__(y)
+ #return y.sum() * self.c
+ try:
+ return y.squared_norm() * self.c
+ except AttributeError as ae:
+ # added for compatibility with SIRF
+ return (y.norm()**2) * self.c
+
+ def gradient(self, x, out = None):
+ if self.memopt:
+ #return 2.0*self.c*self.A.adjoint( self.A.direct(x) - self.b )
+
+ self.A.direct(x, out=self.range_tmp)
+ self.range_tmp -= self.b
+ self.A.adjoint(self.range_tmp, out=out)
+ #self.direct_placehold.multiply(2.0*self.c, out=out)
+ out *= (self.c * 2.0)
+ else:
+ return (2.0*self.c)*self.A.adjoint( self.A.direct(x) - self.b )
+
+
+
+# Box constraints indicator function. Calling returns 0 if argument is within
+# the box. The prox operator is projection onto the box. Only implements one
+# scalar lower and one upper as constraint on all elements. Should generalise
+# to vectors to allow different constraints one elements.
+class IndicatorBox(Function):
+
+ def __init__(self,lower=-numpy.inf,upper=numpy.inf):
+ # Do nothing
+ super(IndicatorBox, self).__init__()
+ self.lower = lower
+ self.upper = upper
+
+
+ def __call__(self,x):
+
+ if (numpy.all(x.array>=self.lower) and
+ numpy.all(x.array <= self.upper) ):
+ val = 0
+ else:
+ val = numpy.inf
+ return val
+
+ def prox(self,x,tau=None):
+ return (x.maximum(self.lower)).minimum(self.upper)
+
+ def proximal(self, x, tau, out=None):
+ if out is None:
+ return self.prox(x, tau)
+ else:
+ if not x.shape == out.shape:
+ raise ValueError('Norm1 Incompatible size:',
+ x.shape, out.shape)
+ #(x.abs() - tau*self.gamma).maximum(0) * x.sign()
+ x.abs(out = out)
+ out.__isub__(tau*self.gamma)
+ out.maximum(0, out=out)
+ if self.sign_x is None or not x.shape == self.sign_x.shape:
+ self.sign_x = x.sign()
+ else:
+ x.sign(out=self.sign_x)
+
+ out.__imul__( self.sign_x )
+
+# A more interesting example, least squares plus 1-norm minimization.
+# Define class to represent 1-norm including prox function
+class Norm1(Function):
+
+ def __init__(self,gamma):
+ super(Norm1, self).__init__()
+ self.gamma = gamma
+ self.L = 1
+ self.sign_x = None
+
+ def __call__(self,x,out=None):
+ if out is None:
+ return self.gamma*(x.abs().sum())
+ else:
+ if not x.shape == out.shape:
+ raise ValueError('Norm1 Incompatible size:',
+ x.shape, out.shape)
+ x.abs(out=out)
+ return out.sum() * self.gamma
+
+ def prox(self,x,tau):
+ return (x.abs() - tau*self.gamma).maximum(0) * x.sign()
+
+ def proximal(self, x, tau, out=None):
+ if out is None:
+ return self.prox(x, tau)
+ else:
+ if isSizeCorrect(x,out):
+ # check dimensionality
+ if issubclass(type(out), DataContainer):
+ v = (x.abs() - tau*self.gamma).maximum(0)
+ x.sign(out=out)
+ out *= v
+ #out.fill(self.prox(x,tau))
+ elif issubclass(type(out) , numpy.ndarray):
+ v = (x.abs() - tau*self.gamma).maximum(0)
+ out[:] = x.sign()
+ out *= v
+ #out[:] = self.prox(x,tau)
+ else:
+ raise ValueError ('Wrong size: x{0} out{1}'.format(x.shape,out.shape) )
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/BlockFunction.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/BlockFunction.py
new file mode 100644
index 0000000..70216a9
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/BlockFunction.py
@@ -0,0 +1,70 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 8 10:01:31 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
+from ccpi.framework import BlockDataContainer
+
+class BlockFunction(Function):
+ '''A Block vector of Functions
+
+ .. math::
+
+ f = [f_1,f_2,f_3]
+ f([x_1,x_2,x_3]) = f_1(x_1) + f_2(x_2) + f_3(x_3)
+
+ '''
+ def __init__(self, *functions):
+ '''Creator'''
+ self.functions = functions
+ self.length = len(self.functions)
+
+ super(BlockFunction, self).__init__()
+
+ def __call__(self, x):
+ '''evaluates the BlockFunction on the BlockDataContainer
+
+ :param: x (BlockDataContainer): must have as many rows as self.length
+
+ returns sum(f_i(x_i))
+ '''
+ if self.length != x.shape[0]:
+ raise ValueError('BlockFunction and BlockDataContainer have incompatible size')
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[i](x.get_item(i))
+ return t
+
+ def convex_conjugate(self, x):
+ '''Convex_conjugate does not take into account the BlockOperator'''
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[i].convex_conjugate(x.get_item(i))
+ return t
+
+
+ def proximal_conjugate(self, x, tau, out = None):
+ '''proximal_conjugate does not take into account the BlockOperator'''
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau)
+
+ return BlockDataContainer(*out)
+
+ def proximal(self, x, tau, out = None):
+ '''proximal does not take into account the BlockOperator'''
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal(x.get_item(i), tau)
+
+ return BlockDataContainer(*out)
+
+ def gradient(self,x, out=None):
+ '''FIXME: gradient returns pass'''
+ pass \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/Function.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Function.py
new file mode 100644
index 0000000..82f24a6
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Function.py
@@ -0,0 +1,69 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import warnings
+from ccpi.optimisation.functions.ScaledFunction import ScaledFunction
+
+class Function(object):
+ '''Abstract class representing a function
+
+ Members:
+ L is the Lipschitz constant of the gradient of the Function
+ '''
+ def __init__(self):
+ self.L = None
+
+ def __call__(self,x, out=None):
+ '''Evaluates the function at x '''
+ raise NotImplementedError
+
+ def gradient(self, x, out=None):
+ '''Returns the gradient of the function at x, if the function is differentiable'''
+ raise NotImplementedError
+
+ def proximal(self, x, tau, out=None):
+ '''This returns the proximal operator for the function at x, tau'''
+ raise NotImplementedError
+
+ def convex_conjugate(self, x, out=None):
+ '''This evaluates the convex conjugate of the function at x'''
+ raise NotImplementedError
+
+ def proximal_conjugate(self, x, tau, out = None):
+ '''This returns the proximal operator for the convex conjugate of the function at x, tau'''
+ raise NotImplementedError
+
+ def grad(self, x):
+ '''Alias of gradient(x,None)'''
+ warnings.warn('''This method will disappear in following
+ versions of the CIL. Use gradient instead''', DeprecationWarning)
+ return self.gradient(x, out=None)
+
+ def prox(self, x, tau):
+ '''Alias of proximal(x, tau, None)'''
+ warnings.warn('''This method will disappear in following
+ versions of the CIL. Use proximal instead''', DeprecationWarning)
+ return self.proximal(x, out=None)
+
+ def __rmul__(self, scalar):
+ '''Defines the multiplication by a scalar on the left
+
+ returns a ScaledFunction'''
+ return ScaledFunction(self, scalar)
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/FunctionOperatorComposition.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/FunctionOperatorComposition.py
new file mode 100644
index 0000000..34b7e35
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/FunctionOperatorComposition.py
@@ -0,0 +1,65 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 8 09:55:36 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
+from ccpi.optimisation.functions import ScaledFunction
+
+
+class FunctionOperatorComposition(Function):
+
+ def __init__(self, operator, function):
+ super(FunctionOperatorComposition, self).__init__()
+ self.function = function
+ self.operator = operator
+ alpha = 1
+ if isinstance (function, ScaledFunction):
+ alpha = function.scalar
+ self.L = 2 * alpha * operator.norm()**2
+
+
+ def __call__(self, x):
+
+ return self.function(self.operator.direct(x))
+
+ def call_adjoint(self, x):
+
+ return self.function(self.operator.adjoint(x))
+
+ def convex_conjugate(self, x):
+
+ ''' convex_conjugate does not take into account the Operator'''
+ return self.function.convex_conjugate(x)
+
+ def proximal(self, x, tau, out=None):
+
+ '''proximal does not take into account the Operator'''
+
+ return self.function.proximal(x, tau, out=out)
+
+ def proximal_conjugate(self, x, tau, out=None):
+
+ ''' proximal conjugate does not take into account the Operator'''
+
+ return self.function.proximal_conjugate(x, tau, out=out)
+
+ def gradient(self, x, out=None):
+
+ ''' Gradient takes into account the Operator'''
+ if out is None:
+ return self.operator.adjoint(
+ self.function.gradient(self.operator.direct(x))
+ )
+ else:
+ self.operator.adjoint(
+ self.function.gradient(self.operator.direct(x),
+ out=out)
+ )
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/IndicatorBox.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/IndicatorBox.py
new file mode 100644
index 0000000..df8dc89
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/IndicatorBox.py
@@ -0,0 +1,65 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from ccpi.optimisation.functions import Function
+import numpy
+
+class IndicatorBox(Function):
+ '''Box constraints indicator function.
+
+ Calling returns 0 if argument is within the box. The prox operator is projection onto the box.
+ Only implements one scalar lower and one upper as constraint on all elements. Should generalise
+ to vectors to allow different constraints one elements.
+'''
+
+ def __init__(self,lower=-numpy.inf,upper=numpy.inf):
+ # Do nothing
+ super(IndicatorBox, self).__init__()
+ self.lower = lower
+ self.upper = upper
+
+
+ def __call__(self,x):
+
+ if (numpy.all(x.array>=self.lower) and
+ numpy.all(x.array <= self.upper) ):
+ val = 0
+ else:
+ val = numpy.inf
+ return val
+
+ def prox(self,x,tau=None):
+ return (x.maximum(self.lower)).minimum(self.upper)
+
+ def proximal(self, x, tau, out=None):
+ if out is None:
+ return self.prox(x, tau)
+ else:
+ if not x.shape == out.shape:
+ raise ValueError('Norm1 Incompatible size:',
+ x.shape, out.shape)
+ #(x.abs() - tau*self.gamma).maximum(0) * x.sign()
+ x.abs(out = out)
+ out.__isub__(tau*self.gamma)
+ out.maximum(0, out=out)
+ if self.sign_x is None or not x.shape == self.sign_x.shape:
+ self.sign_x = x.sign()
+ else:
+ x.sign(out=self.sign_x)
+
+ out.__imul__( self.sign_x )
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/L1Norm.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L1Norm.py
new file mode 100644
index 0000000..5a47edd
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L1Norm.py
@@ -0,0 +1,92 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Created on Wed Mar 6 19:42:34 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
+from ccpi.framework import DataContainer, ImageData, ImageGeometry
+
+
+############################ L1NORM FUNCTIONS #############################
+class SimpleL1Norm(Function):
+
+ def __init__(self, alpha=1):
+
+ super(SimpleL1Norm, self).__init__()
+ self.alpha = alpha
+
+ def __call__(self, x):
+ return self.alpha * x.abs().sum()
+
+ def gradient(self,x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ return 0
+
+ def proximal(self, x, tau):
+ ''' Soft Threshold'''
+ return x.sign() * (x.abs() - tau * self.alpha).maximum(0)
+
+ def proximal_conjugate(self, x, tau):
+ return x.divide((x.abs()/self.alpha).maximum(1.0))
+
+class L1Norm(SimpleL1Norm):
+
+ def __init__(self, alpha=1, **kwargs):
+
+ super(L1Norm, self).__init__()
+ self.alpha = alpha
+ self.b = kwargs.get('b',None)
+
+ def __call__(self, x):
+
+ if self.b is None:
+ return SimpleL1Norm.__call__(self, x)
+ else:
+ return SimpleL1Norm.__call__(self, x - self.b)
+
+ def gradient(self, x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ if self.b is None:
+ return SimpleL1Norm.convex_conjugate(self, x)
+ else:
+ return SimpleL1Norm.convex_conjugate(self, x) + (self.b * x).sum()
+
+ def proximal(self, x, tau):
+
+ if self.b is None:
+ return SimpleL1Norm.proximal(self, x, tau)
+ else:
+ return self.b + SimpleL1Norm.proximal(self, x - self.b , tau)
+
+ def proximal_conjugate(self, x, tau):
+
+ if self.b is None:
+ return SimpleL1Norm.proximal_conjugate(self, x, tau)
+ else:
+ return SimpleL1Norm.proximal_conjugate(self, x - tau*self.b, tau)
+ \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py
new file mode 100644
index 0000000..5489d92
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/L2NormSquared.py
@@ -0,0 +1,222 @@
+# -*- coding: utf-8 -*-
+
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 7 13:10:56 2019
+
+@author: evangelos
+"""
+
+import numpy
+from ccpi.optimisation.functions import Function
+from ccpi.optimisation.functions.ScaledFunction import ScaledFunction
+from ccpi.framework import DataContainer, ImageData, ImageGeometry
+
+############################ L2NORM FUNCTION #############################
+class L2NormSquared(Function):
+
+ def __init__(self, **kwargs):
+
+ ''' L2NormSquared class
+ f : ImageGeometry --> R
+
+ Cases: f(x) = ||x||^{2}_{2}
+ f(x) = || x - b ||^{2}_{2}
+
+ '''
+
+ #TODO need x, b to live in the same geometry if b is not None
+
+ super(L2NormSquared, self).__init__()
+ self.b = kwargs.get('b',None)
+
+ def __call__(self, x):
+ ''' Evaluates L2NormSq at point x'''
+
+ y = x
+ if self.b is not None:
+# x.subtract(self.b, out = x)
+ y = x - self.b
+# else:
+# y
+# if out is None:
+# return x.squared_norm()
+# else:
+ try:
+ return y.squared_norm()
+ except AttributeError as ae:
+ # added for compatibility with SIRF
+ return (y.norm()**2)
+
+
+
+ def gradient(self, x, out=None):
+ ''' Evaluates gradient of L2NormSq at point x'''
+ if out is not None:
+ out.fill(x)
+ if self.b is not None:
+ out -= self.b
+ out *= 2
+ else:
+ y = x
+ if self.b is not None:
+# x.subtract(self.b, out=x)
+ y = x - self.b
+ return 2*y
+
+
+ def convex_conjugate(self, x, out=None):
+ ''' Evaluate convex conjugate of L2NormSq'''
+
+ tmp = 0
+ if self.b is not None:
+ tmp = (self.b * x).sum()
+
+ if out is None:
+ # FIXME: this is a number
+ return (1/4) * x.squared_norm() + tmp
+ else:
+ # FIXME: this is a DataContainer
+ out.fill((1/4) * x.squared_norm() + tmp)
+
+
+ def proximal(self, x, tau, out = None):
+
+ ''' The proximal operator ( prox_\{tau * f\}(x) ) evaluates i.e.,
+ argmin_x { 0.5||x - u||^{2} + tau f(x) }
+ '''
+
+ if out is None:
+ if self.b is not None:
+ return (x - self.b)/(1+2*tau) + self.b
+ else:
+ return x/(1+2*tau)
+ else:
+ out.fill(x)
+ if self.b is not None:
+ out -= self.b
+ out /= (1+2*tau)
+ if self.b is not None:
+ out += self.b
+ #out.fill((x - self.b)/(1+2*tau) + self.b)
+ #else:
+ # out.fill(x/(1+2*tau))
+
+
+ def proximal_conjugate(self, x, tau, out=None):
+
+ if out is None:
+ if self.b is not None:
+ return (x - tau*self.b)/(1 + tau/2)
+ else:
+ return x/(1 + tau/2 )
+ else:
+ if self.b is not None:
+ out.fill((x - tau*self.b)/(1 + tau/2))
+ else:
+ out.fill(x/(1 + tau/2 ))
+
+ def __rmul__(self, scalar):
+ return ScaledFunction(self, scalar)
+
+
+if __name__ == '__main__':
+
+
+ # TESTS for L2 and scalar * L2
+
+ M, N, K = 2,3,5
+ ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N, voxel_num_z = K)
+ u = ig.allocate('random_int')
+ b = ig.allocate('random_int')
+
+ # check grad/call no data
+ f = L2NormSquared()
+ a1 = f.gradient(u)
+ a2 = 2 * u
+ numpy.testing.assert_array_almost_equal(a1.as_array(), a2.as_array(), decimal=4)
+ numpy.testing.assert_equal(f(u), u.squared_norm())
+
+ # check grad/call with data
+ f1 = L2NormSquared(b=b)
+ b1 = f1.gradient(u)
+ b2 = 2 * (u-b)
+
+ numpy.testing.assert_array_almost_equal(b1.as_array(), b2.as_array(), decimal=4)
+ numpy.testing.assert_equal(f1(u), (u-b).squared_norm())
+
+ #check convex conjuagate no data
+ c1 = f.convex_conjugate(u)
+ c2 = 1/4 * u.squared_norm()
+ numpy.testing.assert_equal(c1, c2)
+
+ #check convex conjuagate with data
+ d1 = f1.convex_conjugate(u)
+ d2 = (1/4) * u.squared_norm() + (u*b).sum()
+ numpy.testing.assert_equal(d1, d2)
+
+ # check proximal no data
+ tau = 5
+ e1 = f.proximal(u, tau)
+ e2 = u/(1+2*tau)
+ numpy.testing.assert_array_almost_equal(e1.as_array(), e2.as_array(), decimal=4)
+
+ # check proximal with data
+ tau = 5
+ h1 = f1.proximal(u, tau)
+ h2 = (u-b)/(1+2*tau) + b
+ numpy.testing.assert_array_almost_equal(h1.as_array(), h2.as_array(), decimal=4)
+
+ # check proximal conjugate no data
+ tau = 0.2
+ k1 = f.proximal_conjugate(u, tau)
+ k2 = u/(1 + tau/2 )
+ numpy.testing.assert_array_almost_equal(k1.as_array(), k2.as_array(), decimal=4)
+
+ # check proximal conjugate with data
+ l1 = f1.proximal_conjugate(u, tau)
+ l2 = (u - tau * b)/(1 + tau/2 )
+ numpy.testing.assert_array_almost_equal(l1.as_array(), l2.as_array(), decimal=4)
+
+
+ # check scaled function properties
+
+ # scalar
+ scalar = 100
+ f_scaled_no_data = scalar * L2NormSquared()
+ f_scaled_data = scalar * L2NormSquared(b=b)
+
+ # call
+ numpy.testing.assert_equal(f_scaled_no_data(u), scalar*f(u))
+ numpy.testing.assert_equal(f_scaled_data(u), scalar*f1(u))
+
+ # grad
+ numpy.testing.assert_array_almost_equal(f_scaled_no_data.gradient(u).as_array(), scalar*f.gradient(u).as_array(), decimal=4)
+ numpy.testing.assert_array_almost_equal(f_scaled_data.gradient(u).as_array(), scalar*f1.gradient(u).as_array(), decimal=4)
+
+ # conj
+ numpy.testing.assert_almost_equal(f_scaled_no_data.convex_conjugate(u), \
+ f.convex_conjugate(u/scalar) * scalar, decimal=4)
+
+ numpy.testing.assert_almost_equal(f_scaled_data.convex_conjugate(u), \
+ scalar * f1.convex_conjugate(u/scalar), decimal=4)
+
+ # proximal
+ numpy.testing.assert_array_almost_equal(f_scaled_no_data.proximal(u, tau).as_array(), \
+ f.proximal(u, tau*scalar).as_array())
+
+
+ numpy.testing.assert_array_almost_equal(f_scaled_data.proximal(u, tau).as_array(), \
+ f1.proximal(u, tau*scalar).as_array())
+
+
+ # proximal conjugate
+ numpy.testing.assert_array_almost_equal(f_scaled_no_data.proximal_conjugate(u, tau).as_array(), \
+ (u/(1 + tau/(2*scalar) )).as_array(), decimal=4)
+
+ numpy.testing.assert_array_almost_equal(f_scaled_data.proximal_conjugate(u, tau).as_array(), \
+ ((u - tau * b)/(1 + tau/(2*scalar) )).as_array(), decimal=4)
+
+
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/MixedL21Norm.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/MixedL21Norm.py
new file mode 100644
index 0000000..1c51236
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/MixedL21Norm.py
@@ -0,0 +1,136 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+from ccpi.optimisation.functions import Function, ScaledFunction
+from ccpi.framework import DataContainer, ImageData, \
+ ImageGeometry, BlockDataContainer
+
+############################ mixed_L1,2NORM FUNCTIONS #####################
+class MixedL21Norm(Function):
+
+ def __init__(self, **kwargs):
+
+ super(MixedL21Norm, self).__init__()
+ self.SymTensor = kwargs.get('SymTensor',False)
+
+ def __call__(self, x, out=None):
+
+ ''' Evaluates L1,2Norm at point x
+
+ :param: x is a BlockDataContainer
+
+ '''
+ if self.SymTensor:
+
+ param = [1]*x.shape[0]
+ param[-1] = 2
+ tmp = [param[i]*(x[i] ** 2) for i in range(x.shape[0])]
+ res = sum(tmp).sqrt().sum()
+ else:
+
+# tmp = [ x[i]**2 for i in range(x.shape[0])]
+ tmp = [ el**2 for el in x.containers ]
+
+# print(x.containers)
+# print(tmp)
+# print(type(sum(tmp)))
+# print(type(tmp))
+ res = sum(tmp).sqrt().sum()
+# print(res)
+ return res
+
+ def gradient(self, x, out=None):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+
+ ''' This is the Indicator function of ||\cdot||_{2, \infty}
+ which is either 0 if ||x||_{2, \infty} or \infty
+ '''
+ return 0.0
+
+ def proximal(self, x, tau, out=None):
+
+ '''
+ For this we need to define a MixedL2,2 norm acting on BDC,
+ different form L2NormSquared which acts on DC
+
+ '''
+
+ pass
+
+ def proximal_conjugate(self, x, tau, out=None):
+
+ if self.SymTensor:
+
+ param = [1]*x.shape[0]
+ param[-1] = 2
+ tmp = [param[i]*(x[i] ** 2) for i in range(x.shape[0])]
+ frac = [x[i]/(sum(tmp).sqrt()).maximum(1.0) for i in range(x.shape[0])]
+ res = BlockDataContainer(*frac)
+
+ return res
+
+# tmp2 = np.sqrt(x.as_array()[0]**2 + x.as_array()[1]**2 + 2*x.as_array()[2]**2)/self.alpha
+# res = x.divide(ImageData(tmp2).maximum(1.0))
+ else:
+
+ tmp = [ el*el for el in x]
+ res = (sum(tmp).sqrt()).maximum(1.0)
+ frac = [x[i]/res for i in range(x.shape[0])]
+ res = BlockDataContainer(*frac)
+
+ return res
+
+ def __rmul__(self, scalar):
+ return ScaledFunction(self, scalar)
+
+#class MixedL21Norm_tensor(Function):
+#
+# def __init__(self):
+# print("feerf")
+#
+#
+if __name__ == '__main__':
+
+ M, N, K = 2,3,5
+ ig = ImageGeometry(voxel_num_x=M, voxel_num_y = N)
+ u1 = ig.allocate('random_int')
+ u2 = ig.allocate('random_int')
+
+ U = BlockDataContainer(u1, u2, shape=(2,1))
+
+ # Define no scale and scaled
+ f_no_scaled = MixedL21Norm()
+ f_scaled = 0.5 * MixedL21Norm()
+
+ # call
+
+ a1 = f_no_scaled(U)
+ a2 = f_scaled(U)
+
+ z = f_no_scaled.proximal_conjugate(U, 1)
+
+ f_no_scaled = MixedL21Norm()
+
+ tmp = [el*el for el in U]
+
+
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/Norm2Sq.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Norm2Sq.py
new file mode 100644
index 0000000..b553d7c
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/Norm2Sq.py
@@ -0,0 +1,98 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from ccpi.optimisation.functions import Function
+import numpy
+import warnings
+
+# Define a class for squared 2-norm
+class Norm2sq(Function):
+ '''
+ f(x) = c*||A*x-b||_2^2
+
+ which has
+
+ grad[f](x) = 2*c*A^T*(A*x-b)
+
+ and Lipschitz constant
+
+ L = 2*c*||A||_2^2 = 2*s1(A)^2
+
+ where s1(A) is the largest singular value of A.
+
+ '''
+
+ def __init__(self,A,b,c=1.0,memopt=False):
+ super(Norm2sq, self).__init__()
+
+ self.A = A # Should be an operator, default identity
+ self.b = b # Default zero DataSet?
+ self.c = c # Default 1.
+ if memopt:
+ try:
+ self.range_tmp = A.range_geometry().allocate()
+ self.domain_tmp = A.domain_geometry().allocate()
+ self.memopt = True
+ except NameError as ne:
+ warnings.warn(str(ne))
+ self.memopt = False
+ except NotImplementedError as nie:
+ print (nie)
+ warnings.warn(str(nie))
+ self.memopt = False
+ else:
+ self.memopt = False
+
+ # Compute the Lipschitz parameter from the operator if possible
+ # Leave it initialised to None otherwise
+ try:
+ self.L = 2.0*self.c*(self.A.norm()**2)
+ except AttributeError as ae:
+ pass
+ except NotImplementedError as noe:
+ pass
+
+ #def grad(self,x):
+ # return self.gradient(x, out=None)
+
+ def __call__(self,x):
+ #return self.c* np.sum(np.square((self.A.direct(x) - self.b).ravel()))
+ #if out is None:
+ # return self.c*( ( (self.A.direct(x)-self.b)**2).sum() )
+ #else:
+ y = self.A.direct(x)
+ y.__isub__(self.b)
+ #y.__imul__(y)
+ #return y.sum() * self.c
+ try:
+ return y.squared_norm() * self.c
+ except AttributeError as ae:
+ # added for compatibility with SIRF
+ return (y.norm()**2) * self.c
+
+ def gradient(self, x, out = None):
+ if self.memopt:
+ #return 2.0*self.c*self.A.adjoint( self.A.direct(x) - self.b )
+
+ self.A.direct(x, out=self.range_tmp)
+ self.range_tmp -= self.b
+ self.A.adjoint(self.range_tmp, out=out)
+ #self.direct_placehold.multiply(2.0*self.c, out=out)
+ out *= (self.c * 2.0)
+ else:
+ return (2.0*self.c)*self.A.adjoint( self.A.direct(x) - self.b )
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/ScaledFunction.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/ScaledFunction.py
new file mode 100644
index 0000000..046a4a6
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/ScaledFunction.py
@@ -0,0 +1,91 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from numbers import Number
+import numpy
+
+class ScaledFunction(object):
+ '''ScaledFunction
+
+ A class to represent the scalar multiplication of an Function with a scalar.
+ It holds a function and a scalar. Basically it returns the multiplication
+ of the product of the function __call__, convex_conjugate and gradient with the scalar.
+ For the rest it behaves like the function it holds.
+
+ Args:
+ function (Function): a Function or BlockOperator
+ scalar (Number): a scalar multiplier
+ Example:
+ The scaled operator behaves like the following:
+
+ '''
+ def __init__(self, function, scalar):
+ super(ScaledFunction, self).__init__()
+ self.L = None
+ if not isinstance (scalar, Number):
+ raise TypeError('expected scalar: got {}'.format(type(scalar)))
+ self.scalar = scalar
+ self.function = function
+
+ def __call__(self,x, out=None):
+ '''Evaluates the function at x '''
+ return self.scalar * self.function(x)
+
+ def convex_conjugate(self, x):
+ '''returns the convex_conjugate of the scaled function '''
+ # if out is None:
+ # return self.scalar * self.function.convex_conjugate(x/self.scalar)
+ # else:
+ # out.fill(self.function.convex_conjugate(x/self.scalar))
+ # out *= self.scalar
+ return self.scalar * self.function.convex_conjugate(x/self.scalar)
+
+ def proximal_conjugate(self, x, tau, out = None):
+ '''This returns the proximal operator for the function at x, tau
+ '''
+ if out is None:
+ return self.scalar * self.function.proximal_conjugate(x/self.scalar, tau/self.scalar)
+ else:
+ out.fill(self.scalar * self.function.proximal_conjugate(x/self.scalar, tau/self.scalar))
+
+ def grad(self, x):
+ '''Alias of gradient(x,None)'''
+ warnings.warn('''This method will disappear in following
+ versions of the CIL. Use gradient instead''', DeprecationWarning)
+ return self.gradient(x, out=None)
+
+ def prox(self, x, tau):
+ '''Alias of proximal(x, tau, None)'''
+ warnings.warn('''This method will disappear in following
+ versions of the CIL. Use proximal instead''', DeprecationWarning)
+ return self.proximal(x, out=None)
+
+ def gradient(self, x, out=None):
+ '''Returns the gradient of the function at x, if the function is differentiable'''
+ if out is None:
+ return self.scalar * self.function.gradient(x)
+ else:
+ out.fill( self.scalar * self.function.gradient(x) )
+
+ def proximal(self, x, tau, out=None):
+ '''This returns the proximal operator for the function at x, tau
+ '''
+ if out is None:
+ return self.function.proximal(x, tau*self.scalar)
+ else:
+ out.fill( self.function.proximal(x, tau*self.scalar) )
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/ZeroFun.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/ZeroFun.py
new file mode 100644
index 0000000..88d9b64
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/ZeroFun.py
@@ -0,0 +1,60 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
+from ccpi.framework import DataContainer, ImageData
+from ccpi.framework import BlockDataContainer
+
+class ZeroFun(Function):
+
+ def __init__(self):
+ super(ZeroFun, self).__init__()
+
+ def __call__(self,x):
+ return 0
+
+ def convex_conjugate(self, x):
+ ''' This is the support function sup <x, x^{*}> which in fact is the
+ indicator function for the set = {0}
+ So 0 if x=0, or inf if x neq 0
+ '''
+
+ if x.shape[0]==1:
+ return x.maximum(0).sum()
+ else:
+ if isinstance(x, BlockDataContainer):
+ return x.get_item(0).maximum(0).sum() + x.get_item(1).maximum(0).sum()
+ else:
+ return x.maximum(0).sum() + x.maximum(0).sum()
+
+ def proximal(self,x,tau, out=None):
+ if out is None:
+ return x.copy()
+ else:
+ out.fill(x)
+
+ def proximal_conjugate(self, x, tau):
+ return 0
+
+ def domain_geometry(self):
+ pass
+ def range_geometry(self):
+ pass \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/__init__.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/__init__.py
new file mode 100644
index 0000000..2ed36f5
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/__init__.py
@@ -0,0 +1,13 @@
+# -*- coding: utf-8 -*-
+
+from .Function import Function
+from .ZeroFun import ZeroFun
+from .L1Norm import SimpleL1Norm, L1Norm
+#from .L2NormSquared import L2NormSq, SimpleL2NormSq
+from .L2NormSquared import L2NormSquared
+from .BlockFunction import BlockFunction
+from .ScaledFunction import ScaledFunction
+from .FunctionOperatorComposition import FunctionOperatorComposition
+from .MixedL21Norm import MixedL21Norm
+from .IndicatorBox import IndicatorBox
+from .Norm2Sq import Norm2sq
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/functions.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/functions.py
new file mode 100644
index 0000000..8632920
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/functions.py
@@ -0,0 +1,312 @@
+# -*- coding: utf-8 -*-
+
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 7 13:10:56 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
+from ccpi.framework import DataContainer, ImageData, ImageGeometry
+from operators import CompositeDataContainer, Identity, CompositeOperator
+from numbers import Number
+
+
+############################ L2NORM FUNCTIONS #############################
+class SimpleL2NormSq(Function):
+
+ def __init__(self, alpha=1):
+
+ super(SimpleL2NormSq, self).__init__()
+ self.alpha = alpha
+
+ def __call__(self, x):
+ return self.alpha * x.power(2).sum()
+
+ def gradient(self,x):
+ return 2 * self.alpha * x
+
+ def convex_conjugate(self,x):
+ return (1/4*self.alpha) * x.power(2).sum()
+
+ def proximal(self, x, tau):
+ return x.divide(1+2*tau*self.alpha)
+
+ def proximal_conjugate(self, x, tau):
+ return x.divide(1 + tau/2*self.alpha )
+
+
+class L2NormSq(SimpleL2NormSq):
+
+ def __init__(self, A, b = None, alpha=1, **kwargs):
+
+ super(L2NormSq, self).__init__(alpha=alpha)
+ self.alpha = alpha
+ self.A = A
+ self.b = b
+
+ def __call__(self, x):
+
+ if self.b is None:
+ return SimpleL2NormSq.__call__(self, self.A.direct(x))
+ else:
+ return SimpleL2NormSq.__call__(self, self.A.direct(x) - self.b)
+
+ def convex_conjugate(self, x):
+
+ ''' The convex conjugate corresponds to the simple functional i.e.,
+ f(x) = alpha * ||x - b||_{2}^{2}
+ '''
+
+ if self.b is None:
+ return SimpleL2NormSq.convex_conjugate(self, x)
+ else:
+ return SimpleL2NormSq.convex_conjugate(self, x) + (self.b * x).sum()
+
+ def gradient(self, x):
+
+ if self.b is None:
+ return 2*self.alpha * self.A.adjoint(self.A.direct(x))
+ else:
+ return 2*self.alpha * self.A.adjoint(self.A.direct(x) - self.b)
+
+ def proximal(self, x, tau):
+
+ ''' The proximal operator corresponds to the simple functional i.e.,
+ f(x) = alpha * ||x - b||_{2}^{2}
+
+ argmin_x { 0.5||x - u||^{2} + tau f(x) }
+ '''
+
+ if self.b is None:
+ return SimpleL2NormSq.proximal(self, x, tau)
+ else:
+ return self.b + SimpleL2NormSq.proximal(self, x - self.b , tau)
+
+
+ def proximal_conjugate(self, x, tau):
+
+ ''' The proximal operator corresponds to the simple convex conjugate
+ functional i.e., f^{*}(x^{)
+ argmin_x { 0.5||x - u||^{2} + tau f(x) }
+ '''
+ if self.b is None:
+ return SimpleL2NormSq.proximal_conjugate(self, x, tau)
+ else:
+ return SimpleL2NormSq.proximal_conjugate(self, x - tau * self.b, tau)
+
+
+############################ L1NORM FUNCTIONS #############################
+class SimpleL1Norm(Function):
+
+ def __init__(self, alpha=1):
+
+ super(SimpleL1Norm, self).__init__()
+ self.alpha = alpha
+
+ def __call__(self, x):
+ return self.alpha * x.abs().sum()
+
+ def gradient(self,x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ return 0
+
+ def proximal(self, x, tau):
+ ''' Soft Threshold'''
+ return x.sign() * (x.abs() - tau * self.alpha).maximum(1.0)
+
+ def proximal_conjugate(self, x, tau):
+ return x.divide((x.abs()/self.alpha).maximum(1.0))
+
+class L1Norm(SimpleL1Norm):
+
+ def __init__(self, A, b = None, alpha=1, **kwargs):
+
+ super(L1Norm, self).__init__()
+ self.alpha = alpha
+ self.A = A
+ self.b = b
+
+ def __call__(self, x):
+
+ if self.b is None:
+ return SimpleL1Norm.__call__(self, self.A.direct(x))
+ else:
+ return SimpleL1Norm.__call__(self, self.A.direct(x) - self.b)
+
+ def gradient(self, x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ if self.b is None:
+ return SimpleL1Norm.convex_conjugate(self, x)
+ else:
+ return SimpleL1Norm.convex_conjugate(self, x) + (self.b * x).sum()
+
+ def proximal(self, x, tau):
+
+ if self.b is None:
+ return SimpleL1Norm.proximal(self, x, tau)
+ else:
+ return self.b + SimpleL1Norm.proximal(self, x + self.b , tau)
+
+ def proximal_conjugate(self, x, tau):
+
+ if self.b is None:
+ return SimpleL1Norm.proximal_conjugate(self, x, tau)
+ else:
+ return SimpleL1Norm.proximal_conjugate(self, x - tau*self.b, tau)
+
+
+############################ mixed_L1,2NORM FUNCTIONS #############################
+class mixed_L12Norm(Function):
+
+ def __init__(self, A, b=None, alpha=1, **kwargs):
+
+ super(mixed_L12Norm, self).__init__()
+ self.alpha = alpha
+ self.A = A
+ self.b = b
+
+ self.sym_grad = kwargs.get('sym_grad',False)
+
+
+
+ def gradient(self,x):
+ return ValueError('Not Differentiable')
+
+
+ def __call__(self,x):
+
+ y = self.A.direct(x)
+ eucl_norm = ImageData(y.power(2).sum(axis=0)).sqrt()
+ eucl_norm.__isub__(self.b)
+ return eucl_norm.sum() * self.alpha
+
+ def convex_conjugate(self,x):
+ return 0
+
+ def proximal_conjugate(self, x, tau):
+
+ if self.b is None:
+
+ if self.sym_grad:
+ tmp2 = np.sqrt(x.as_array()[0]**2 + x.as_array()[1]**2 + 2*x.as_array()[2]**2)/self.alpha
+ res = x.divide(ImageData(tmp2).maximum(1.0))
+ else:
+ res = x.divide((ImageData(x.power(2).sum(axis=0)).sqrt()/self.alpha).maximum(1.0))
+
+ else:
+ res = (x - tau*self.b)/ ((x - tau*self.b)).abs().maximum(1.0)
+
+ return res
+
+
+#%%
+
+class ZeroFun(Function):
+
+ def __init__(self):
+ super(ZeroFun, self).__init__()
+
+ def __call__(self,x):
+ return 0
+
+ def convex_conjugate(self, x):
+ ''' This is the support function sup <x, x^{*}> which in fact is the
+ indicator function for the set = {0}
+ So 0 if x=0, or inf if x neq 0
+ '''
+ return x.maximum(0).sum()
+
+ def proximal(self,x,tau):
+ return x.copy()
+
+ def proximal_conjugate(self, x, tau):
+ return 0
+
+
+class CompositeFunction(Function):
+
+ def __init__(self, *args):
+ self.functions = args
+ self.length = len(self.functions)
+
+ def get_item(self, ind):
+ return self.functions[ind]
+
+ def __call__(self,x):
+
+ t = 0
+ for i in range(self.length):
+ for j in range(x.shape[0]):
+ t +=self.functions[i](x.get_item(j))
+ return t
+
+ def convex_conjugate(self, x):
+
+ z = 0
+ t = 0
+ for i in range(x.shape[0]):
+ t += self.functions[z].convex_conjugate(x.get_item(i))
+ z += 1
+
+ return t
+
+ def proximal_conjugate(self, x, tau, out = None):
+
+ if isinstance(tau, Number):
+ tau = CompositeDataContainer(tau)
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal(x.get_item(i), tau.get_item(0))
+ return CompositeDataContainer(*out)
+
+
+ def proximal_conjugate(self, x, tau, out = None):
+
+ if isinstance(tau, Number):
+ tau = CompositeDataContainer(tau)
+ out = [None]*self.length
+ for i in range(self.length):
+ out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(0))
+ return CompositeDataContainer(*out)
+
+
+
+
+if __name__ == '__main__':
+
+ N = 3
+ ig = (N,N)
+ ag = ig
+ op1 = Gradient(ig)
+ op2 = Identity(ig, ag)
+
+ # Form Composite Operator
+ operator = CompositeOperator((2,1), op1, op2 )
+
+ # Create functions
+ alpha = 1
+ noisy_data = ImageData(np.random.randint(10, size=ag))
+ f = CompositeFunction(L1Norm(op1,alpha), \
+ L2NormSq(op2, noisy_data, c = 0.5, memopt = False) )
+
+ u = ImageData(np.random.randint(10, size=ig))
+ uComp = CompositeDataContainer(u)
+
+ print(f(uComp)) # This is f(Kx) = f1(K1*u) + f2(K2*u)
+
+ f1 = L1Norm(op1,alpha)
+ f2 = L2NormSq(op2, noisy_data, c = 0.5, memopt = False)
+
+ print(f1(u) + f2(u))
+
+
+
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/functions/mixed_L12Norm.py b/Wrappers/Python/build/lib/ccpi/optimisation/functions/mixed_L12Norm.py
new file mode 100644
index 0000000..ffeb32e
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/functions/mixed_L12Norm.py
@@ -0,0 +1,56 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Mar 6 19:43:12 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+#from ccpi.optimisation.funcs import Function
+from ccpi.optimisation.functions import Function
+from ccpi.framework import DataContainer, ImageData, ImageGeometry
+
+############################ mixed_L1,2NORM FUNCTIONS #############################
+class mixed_L12Norm(Function):
+
+ def __init__(self, alpha, **kwargs):
+
+ super(mixed_L12Norm, self).__init__()
+
+ self.alpha = alpha
+ self.b = kwargs.get('b',None)
+ self.sym_grad = kwargs.get('sym_grad',False)
+
+ def __call__(self,x):
+
+ if self.b is None:
+ tmp1 = x
+ else:
+ tmp1 = x - self.b
+#
+ if self.sym_grad:
+ tmp = np.sqrt(tmp1.as_array()[0]**2 + tmp1.as_array()[1]**2 + 2*tmp1.as_array()[2]**2)
+ else:
+ tmp = ImageData(tmp1.power(2).sum(axis=0)).sqrt()
+
+ return self.alpha*tmp.sum()
+
+ def gradient(self,x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ return 0
+
+ def proximal(self, x, tau):
+ pass
+
+ def proximal_conjugate(self, x, tau):
+
+ if self.sym_grad:
+ tmp2 = np.sqrt(x.as_array()[0]**2 + x.as_array()[1]**2 + 2*x.as_array()[2]**2)/self.alpha
+ res = x.divide(ImageData(tmp2).maximum(1.0))
+ else:
+ res = x.divide((ImageData(x.power(2).sum(axis=0)).sqrt()/self.alpha).maximum(1.0))
+
+ return res
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockOperator.py
new file mode 100644
index 0000000..ee8f609
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockOperator.py
@@ -0,0 +1,223 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 14 12:36:40 2019
+
+@author: ofn77899
+"""
+#from ccpi.optimisation.ops import Operator
+import numpy
+from numbers import Number
+import functools
+from ccpi.framework import AcquisitionData, ImageData, BlockDataContainer
+from ccpi.optimisation.operators import Operator, LinearOperator
+from ccpi.optimisation.operators.BlockScaledOperator import BlockScaledOperator
+from ccpi.framework import BlockGeometry
+
+class BlockOperator(Operator):
+ '''A Block matrix containing Operators
+
+ The Block Framework is a generic strategy to treat variational problems in the
+ following form:
+
+ .. math::
+
+ min Regulariser + Fidelity
+
+
+ BlockOperators have a generic shape M x N, and when applied on an
+ Nx1 BlockDataContainer, will yield and Mx1 BlockDataContainer.
+ Notice: BlockDatacontainer are only allowed to have the shape of N x 1, with
+ N rows and 1 column.
+
+ User may specify the shape of the block, by default is a row vector
+
+ Operators in a Block are required to have the same domain column-wise and the
+ same range row-wise.
+ '''
+ __array_priority__ = 1
+ def __init__(self, *args, **kwargs):
+ '''
+ Class creator
+
+ Note:
+ Do not include the `self` parameter in the ``Args`` section.
+
+ Args:
+ :param: vararg (Operator): Operators in the block.
+ :param: shape (:obj:`tuple`, optional): If shape is passed the Operators in
+ vararg are considered input in a row-by-row fashion.
+ Shape and number of Operators must match.
+
+ Example:
+ BlockOperator(op0,op1) results in a row block
+ BlockOperator(op0,op1,shape=(1,2)) results in a column block
+ '''
+ self.operators = args
+ shape = kwargs.get('shape', None)
+ if shape is None:
+ shape = (len(args),1)
+ self.shape = shape
+ n_elements = functools.reduce(lambda x,y: x*y, shape, 1)
+ if len(args) != n_elements:
+ raise ValueError(
+ 'Dimension and size do not match: expected {} got {}'
+ .format(n_elements,len(args)))
+ # test if operators are compatible
+ if not self.column_wise_compatible():
+ raise ValueError('Operators in each column must have the same domain')
+ if not self.row_wise_compatible():
+ raise ValueError('Operators in each row must have the same range')
+
+ def column_wise_compatible(self):
+ '''Operators in a Block should have the same domain per column'''
+ rows, cols = self.shape
+ compatible = True
+ for col in range(cols):
+ column_compatible = True
+ for row in range(1,rows):
+ dg0 = self.get_item(row-1,col).domain_geometry()
+ dg1 = self.get_item(row,col).domain_geometry()
+ column_compatible = dg0.__dict__ == dg1.__dict__ and column_compatible
+ compatible = compatible and column_compatible
+ return compatible
+
+ def row_wise_compatible(self):
+ '''Operators in a Block should have the same range per row'''
+ rows, cols = self.shape
+ compatible = True
+ for row in range(rows):
+ row_compatible = True
+ for col in range(1,cols):
+ dg0 = self.get_item(row,col-1).range_geometry()
+ dg1 = self.get_item(row,col).range_geometry()
+ row_compatible = dg0.__dict__ == dg1.__dict__ and row_compatible
+ compatible = compatible and row_compatible
+ return compatible
+
+ def get_item(self, row, col):
+ '''returns the Operator at specified row and col'''
+ if row > self.shape[0]:
+ raise ValueError('Requested row {} > max {}'.format(row, self.shape[0]))
+ if col > self.shape[1]:
+ raise ValueError('Requested col {} > max {}'.format(col, self.shape[1]))
+
+ index = row*self.shape[1]+col
+ return self.operators[index]
+
+ def norm(self):
+ norm = [op.norm()**2 for op in self.operators]
+ return numpy.sqrt(sum(norm))
+
+ def direct(self, x, out=None):
+ '''Direct operation for the BlockOperator
+
+ BlockOperator work on BlockDataContainer, but they will work on DataContainers
+ and inherited classes by simple wrapping the input in a BlockDataContainer of shape (1,1)
+ '''
+ if not isinstance (x, BlockDataContainer):
+ x_b = BlockDataContainer(x)
+ else:
+ x_b = x
+ shape = self.get_output_shape(x_b.shape)
+ res = []
+ for row in range(self.shape[0]):
+ for col in range(self.shape[1]):
+ if col == 0:
+ prod = self.get_item(row,col).direct(x_b.get_item(col))
+ else:
+ prod += self.get_item(row,col).direct(x_b.get_item(col))
+ res.append(prod)
+ return BlockDataContainer(*res, shape=shape)
+
+ def adjoint(self, x, out=None):
+ '''Adjoint operation for the BlockOperator
+
+ BlockOperator may contain both LinearOperator and Operator
+ This method exists in BlockOperator as it is not known what type of
+ Operator it will contain.
+
+ BlockOperator work on BlockDataContainer, but they will work on DataContainers
+ and inherited classes by simple wrapping the input in a BlockDataContainer of shape (1,1)
+
+ Raises: ValueError if the contained Operators are not linear
+ '''
+ if not functools.reduce(lambda x, y: x and y.is_linear(), self.operators, True):
+ raise ValueError('Not all operators in Block are linear.')
+ if not isinstance (x, BlockDataContainer):
+ x_b = BlockDataContainer(x)
+ else:
+ x_b = x
+ shape = self.get_output_shape(x_b.shape, adjoint=True)
+ res = []
+ for row in range(self.shape[1]):
+ for col in range(self.shape[0]):
+ if col == 0:
+ prod = self.get_item(row, col).adjoint(x_b.get_item(col))
+ else:
+ prod += self.get_item(row, col).adjoint(x_b.get_item(col))
+ res.append(prod)
+ if self.shape[1]==1:
+ return ImageData(*res)
+ else:
+ return BlockDataContainer(*res, shape=shape)
+
+ def get_output_shape(self, xshape, adjoint=False):
+ sshape = self.shape[1]
+ oshape = self.shape[0]
+ if adjoint:
+ sshape = self.shape[0]
+ oshape = self.shape[1]
+ if sshape != xshape[0]:
+ raise ValueError('Incompatible shapes {} {}'.format(self.shape, xshape))
+ return (oshape, xshape[-1])
+
+ def __rmul__(self, scalar):
+ '''Defines the left multiplication with a scalar
+
+ Args: scalar (number or iterable containing numbers):
+
+ Returns: a block operator with Scaled Operators inside'''
+ if isinstance (scalar, list) or isinstance(scalar, tuple) or \
+ isinstance(scalar, numpy.ndarray):
+ if len(scalar) != len(self.operators):
+ raise ValueError('dimensions of scalars and operators do not match')
+ scalars = scalar
+ else:
+ scalars = [scalar for _ in self.operators]
+ # create a list of ScaledOperator-s
+ ops = [ v * op for v,op in zip(scalars, self.operators)]
+ #return BlockScaledOperator(self, scalars ,shape=self.shape)
+ return type(self)(*ops, shape=self.shape)
+ @property
+ def T(self):
+ '''Return the transposed of self
+
+ input in a row-by-row'''
+ newshape = (self.shape[1], self.shape[0])
+ oplist = []
+ for col in range(newshape[1]):
+ for row in range(newshape[0]):
+ oplist.append(self.get_item(col,row))
+ return type(self)(*oplist, shape=newshape)
+
+ def domain_geometry(self):
+ '''returns the domain of the BlockOperator
+
+ If the shape of the BlockOperator is (N,1) the domain is a ImageGeometry or AcquisitionGeometry.
+ Otherwise it is a BlockGeometry.
+ '''
+ if self.shape[1] == 1:
+ # column BlockOperator
+ return self.get_item(0,0).domain_geometry()
+ else:
+ shape = (self.shape[0], 1)
+ return BlockGeometry(*[el.domain_geometry() for el in self.operators],
+ shape=shape)
+
+ def range_geometry(self):
+ '''returns the range of the BlockOperator'''
+ shape = (self.shape[1], 1)
+ return BlockGeometry(*[el.range_geometry() for el in self.operators],
+ shape=shape)
+if __name__ == '__main__':
+ pass
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockScaledOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockScaledOperator.py
new file mode 100644
index 0000000..aeb6c53
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/BlockScaledOperator.py
@@ -0,0 +1,67 @@
+from numbers import Number
+import numpy
+from ccpi.optimisation.operators import ScaledOperator
+import functools
+
+class BlockScaledOperator(ScaledOperator):
+ '''ScaledOperator
+
+ A class to represent the scalar multiplication of an Operator with a scalar.
+ It holds an operator and a scalar. Basically it returns the multiplication
+ of the result of direct and adjoint of the operator with the scalar.
+ For the rest it behaves like the operator it holds.
+
+ Args:
+ operator (Operator): a Operator or LinearOperator
+ scalar (Number): a scalar multiplier
+ Example:
+ The scaled operator behaves like the following:
+ sop = ScaledOperator(operator, scalar)
+ sop.direct(x) = scalar * operator.direct(x)
+ sop.adjoint(x) = scalar * operator.adjoint(x)
+ sop.norm() = operator.norm()
+ sop.range_geometry() = operator.range_geometry()
+ sop.domain_geometry() = operator.domain_geometry()
+ '''
+ def __init__(self, operator, scalar, shape=None):
+ if shape is None:
+ shape = operator.shape
+
+ if isinstance(scalar, (list, tuple, numpy.ndarray)):
+ size = functools.reduce(lambda x,y:x*y, shape, 1)
+ if len(scalar) != size:
+ raise ValueError('Scalar and operators size do not match: {}!={}'
+ .format(len(scalar), len(operator)))
+ self.scalar = scalar[:]
+ print ("BlockScaledOperator ", self.scalar)
+ elif isinstance (scalar, Number):
+ self.scalar = scalar
+ else:
+ raise TypeError('expected scalar to be a number of an iterable: got {}'.format(type(scalar)))
+ self.operator = operator
+ self.shape = shape
+ def direct(self, x, out=None):
+ print ("BlockScaledOperator self.scalar", self.scalar)
+ #print ("self.scalar", self.scalar[0]* x.get_item(0).as_array())
+ return self.scalar * (self.operator.direct(x, out=out))
+ def adjoint(self, x, out=None):
+ if self.operator.is_linear():
+ return self.scalar * self.operator.adjoint(x, out=out)
+ else:
+ raise TypeError('Operator is not linear')
+ def norm(self):
+ return numpy.abs(self.scalar) * self.operator.norm()
+ def range_geometry(self):
+ return self.operator.range_geometry()
+ def domain_geometry(self):
+ return self.operator.domain_geometry()
+ @property
+ def T(self):
+ '''Return the transposed of self'''
+ #print ("transpose before" , self.shape)
+ #shape = (self.shape[1], self.shape[0])
+ ##self.shape = shape
+ ##self.operator.shape = shape
+ #print ("transpose" , shape)
+ #return self
+ return type(self)(self.operator.T, self.scalar) \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/FiniteDifferenceOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/FiniteDifferenceOperator.py
new file mode 100644
index 0000000..24c4e4b
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/FiniteDifferenceOperator.py
@@ -0,0 +1,322 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 1 22:51:17 2019
+
+@author: evangelos
+"""
+
+from ccpi.optimisation.operators import Operator
+from ccpi.optimisation.ops import PowerMethodNonsquare
+from ccpi.framework import ImageData, BlockDataContainer
+import numpy as np
+
+class FiniteDiff(Operator):
+
+ # Works for Neum/Symmetric & periodic boundary conditions
+ # TODO add central differences???
+ # TODO not very well optimised, too many conditions
+ # TODO add discretisation step, should get that from imageGeometry
+
+ # Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x']
+ # Grad_order = ['channels', 'direction_y', 'direction_x']
+ # Grad_order = ['direction_z', 'direction_y', 'direction_x']
+ # Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x']
+
+ def __init__(self, gm_domain, gm_range=None, direction=0, bnd_cond = 'Neumann'):
+ ''''''
+ super(FiniteDiff, self).__init__()
+ '''FIXME: domain and range should be geometries'''
+ self.gm_domain = gm_domain
+ self.gm_range = gm_range
+ self.direction = direction
+ self.bnd_cond = bnd_cond
+
+ # Domain Geometry = Range Geometry if not stated
+ if self.gm_range is None:
+ self.gm_range = self.gm_domain
+ # check direction and "length" of geometry
+ if self.direction + 1 > len(self.gm_domain.shape):
+ raise ValueError('Gradient directions more than geometry domain')
+
+ #self.voxel_size = kwargs.get('voxel_size',1)
+ # this wrongly assumes a homogeneous voxel size
+ self.voxel_size = self.gm_domain.voxel_size_x
+
+
+ def direct(self, x, out=None):
+
+ x_asarr = x.as_array()
+ x_sz = len(x.shape)
+
+ if out is None:
+ out = np.zeros(x.shape)
+
+ fd_arr = out
+
+ ######################## Direct for 2D ###############################
+ if x_sz == 2:
+
+ if self.direction == 1:
+
+ np.subtract( x_asarr[:,1:], x_asarr[:,0:-1], out = fd_arr[:,0:-1] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0], x_asarr[:,-1], out = fd_arr[:,-1] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:], x_asarr[0:-1], out = fd_arr[0:-1,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:], x_asarr[-1,:], out = fd_arr[-1,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Direct for 3D ###############################
+ elif x_sz == 3:
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:,:,:], x_asarr[0:-1,:,:], out = fd_arr[0:-1,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:], x_asarr[-1,:,:], out = fd_arr[-1,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+
+ np.subtract( x_asarr[:,1:,:], x_asarr[:,0:-1,:], out = fd_arr[:,0:-1,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:], x_asarr[:,-1,:], out = fd_arr[:,-1,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+
+ if self.direction == 2:
+
+ np.subtract( x_asarr[:,:,1:], x_asarr[:,:,0:-1], out = fd_arr[:,:,0:-1] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0], x_asarr[:,:,-1], out = fd_arr[:,:,-1] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Direct for 4D ###############################
+ elif x_sz == 4:
+
+ if self.direction == 0:
+ np.subtract( x_asarr[1:,:,:,:], x_asarr[0:-1,:,:,:], out = fd_arr[0:-1,:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:,:], x_asarr[-1,:,:,:], out = fd_arr[-1,:,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+ np.subtract( x_asarr[:,1:,:,:], x_asarr[:,0:-1,:,:], out = fd_arr[:,0:-1,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:,:], x_asarr[:,-1,:,:], out = fd_arr[:,-1,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 2:
+ np.subtract( x_asarr[:,:,1:,:], x_asarr[:,:,0:-1,:], out = fd_arr[:,:,0:-1,:] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0,:], x_asarr[:,:,-1,:], out = fd_arr[:,:,-1,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 3:
+ np.subtract( x_asarr[:,:,:,1:], x_asarr[:,:,:,0:-1], out = fd_arr[:,:,:,0:-1] )
+
+ if self.bnd_cond == 'Neumann':
+ pass
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,:,0], x_asarr[:,:,:,-1], out = fd_arr[:,:,:,-1] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ else:
+ raise NotImplementedError
+
+ res = out/self.voxel_size
+ return type(x)(res)
+
+ def adjoint(self, x, out=None):
+
+ x_asarr = x.as_array()
+ #x_asarr = x
+ x_sz = len(x.shape)
+
+ if out is None:
+ out = np.zeros(x.shape)
+
+ fd_arr = out
+
+ ######################## Adjoint for 2D ###############################
+ if x_sz == 2:
+
+ if self.direction == 1:
+
+ np.subtract( x_asarr[:,1:], x_asarr[:,0:-1], out = fd_arr[:,1:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,0], 0, out = fd_arr[:,0] )
+ np.subtract( -x_asarr[:,-2], 0, out = fd_arr[:,-1] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0], x_asarr[:,-1], out = fd_arr[:,0] )
+
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:,:], x_asarr[0:-1,:], out = fd_arr[1:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[0,:], 0, out = fd_arr[0,:] )
+ np.subtract( -x_asarr[-2,:], 0, out = fd_arr[-1,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:], x_asarr[-1,:], out = fd_arr[0,:] )
+
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Adjoint for 3D ###############################
+ elif x_sz == 3:
+
+ if self.direction == 0:
+
+ np.subtract( x_asarr[1:,:,:], x_asarr[0:-1,:,:], out = fd_arr[1:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[0,:,:], 0, out = fd_arr[0,:,:] )
+ np.subtract( -x_asarr[-2,:,:], 0, out = fd_arr[-1,:,:] )
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:], x_asarr[-1,:,:], out = fd_arr[0,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+ np.subtract( x_asarr[:,1:,:], x_asarr[:,0:-1,:], out = fd_arr[:,1:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,0,:], 0, out = fd_arr[:,0,:] )
+ np.subtract( -x_asarr[:,-2,:], 0, out = fd_arr[:,-1,:] )
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:], x_asarr[:,-1,:], out = fd_arr[:,0,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 2:
+ np.subtract( x_asarr[:,:,1:], x_asarr[:,:,0:-1], out = fd_arr[:,:,1:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,:,0], 0, out = fd_arr[:,:,0] )
+ np.subtract( -x_asarr[:,:,-2], 0, out = fd_arr[:,:,-1] )
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0], x_asarr[:,:,-1], out = fd_arr[:,:,0] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ ######################## Adjoint for 4D ###############################
+ elif x_sz == 4:
+
+ if self.direction == 0:
+ np.subtract( x_asarr[1:,:,:,:], x_asarr[0:-1,:,:,:], out = fd_arr[1:,:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[0,:,:,:], 0, out = fd_arr[0,:,:,:] )
+ np.subtract( -x_asarr[-2,:,:,:], 0, out = fd_arr[-1,:,:,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[0,:,:,:], x_asarr[-1,:,:,:], out = fd_arr[0,:,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 1:
+ np.subtract( x_asarr[:,1:,:,:], x_asarr[:,0:-1,:,:], out = fd_arr[:,1:,:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,0,:,:], 0, out = fd_arr[:,0,:,:] )
+ np.subtract( -x_asarr[:,-2,:,:], 0, out = fd_arr[:,-1,:,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,0,:,:], x_asarr[:,-1,:,:], out = fd_arr[:,0,:,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+
+ if self.direction == 2:
+ np.subtract( x_asarr[:,:,1:,:], x_asarr[:,:,0:-1,:], out = fd_arr[:,:,1:,:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,:,0,:], 0, out = fd_arr[:,:,0,:] )
+ np.subtract( -x_asarr[:,:,-2,:], 0, out = fd_arr[:,:,-1,:] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,0,:], x_asarr[:,:,-1,:], out = fd_arr[:,:,0,:] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ if self.direction == 3:
+ np.subtract( x_asarr[:,:,:,1:], x_asarr[:,:,:,0:-1], out = fd_arr[:,:,:,1:] )
+
+ if self.bnd_cond == 'Neumann':
+ np.subtract( x_asarr[:,:,:,0], 0, out = fd_arr[:,:,:,0] )
+ np.subtract( -x_asarr[:,:,:,-2], 0, out = fd_arr[:,:,:,-1] )
+
+ elif self.bnd_cond == 'Periodic':
+ np.subtract( x_asarr[:,:,:,0], x_asarr[:,:,:,-1], out = fd_arr[:,:,:,0] )
+ else:
+ raise ValueError('No valid boundary conditions')
+
+ else:
+ raise NotImplementedError
+
+ res = out/self.voxel_size
+ return type(x)(-res)
+
+ def range_geometry(self):
+ '''Returns the range geometry'''
+ return self.gm_range
+
+ def domain_geometry(self):
+ '''Returns the domain geometry'''
+ return self.gm_domain
+
+ def norm(self):
+ x0 = self.gm_domain.allocate()
+ x0.fill( np.random.random_sample(x0.shape) )
+ self.s1, sall, svec = PowerMethodNonsquare(self, 25, x0)
+ return self.s1
+
+
+
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py
new file mode 100644
index 0000000..ec14b8f
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/GradientOperator.py
@@ -0,0 +1,78 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 1 22:50:04 2019
+
+@author: evangelos
+"""
+
+from ccpi.optimisation.operators import Operator, LinearOperator, ScaledOperator
+from ccpi.optimisation.ops import PowerMethodNonsquare
+from ccpi.framework import ImageData, ImageGeometry, BlockGeometry
+import numpy
+from ccpi.optimisation.operators import FiniteDiff
+
+#%%
+
+class Gradient(LinearOperator):
+
+ def __init__(self, gm_domain, bnd_cond = 'Neumann', **kwargs):
+
+ super(Gradient, self).__init__()
+
+ self.gm_domain = gm_domain # Domain of Grad Operator
+
+ self.correlation = kwargs.get('correlation','Space')
+
+ if self.correlation=='Space':
+ if self.gm_domain.channels>1:
+ self.gm_range = BlockGeometry(*[self.gm_domain for _ in range(self.gm_domain.length-1)] )
+ self.ind = numpy.arange(1,self.gm_domain.length)
+ else:
+ self.gm_range = BlockGeometry(*[self.gm_domain for _ in range(self.gm_domain.length) ] )
+ self.ind = numpy.arange(self.gm_domain.length)
+ elif self.correlation=='SpaceChannels':
+ if self.gm_domain.channels>1:
+ self.gm_range = BlockGeometry(*[self.gm_domain for _ in range(self.gm_domain.length)])
+ self.ind = range(self.gm_domain.length)
+ else:
+ raise ValueError('No channels to correlate')
+
+ self.bnd_cond = bnd_cond
+
+
+ def direct(self, x, out=None):
+
+ tmp = self.gm_range.allocate()
+
+
+ for i in range(tmp.shape[0]):
+ tmp.get_item(i).fill(FiniteDiff(self.gm_domain, direction = self.ind[i], bnd_cond = self.bnd_cond).direct(x))
+ return tmp
+
+ def adjoint(self, x, out=None):
+
+ tmp = self.gm_domain.allocate()
+ for i in range(x.shape[0]):
+ tmp+=FiniteDiff(self.gm_domain, direction = self.ind[i], bnd_cond = self.bnd_cond).adjoint(x.get_item(i))
+ return tmp
+
+
+ def domain_geometry(self):
+ return self.gm_domain
+
+ def range_geometry(self):
+ return self.gm_range
+
+ def norm(self):
+
+ x0 = self.gm_domain.allocate('random')
+ self.s1, sall, svec = PowerMethodNonsquare(self, 10, x0)
+ return self.s1
+
+ def __rmul__(self, scalar):
+ return ScaledOperator(self, scalar)
+
+if __name__ == '__main__':
+
+ pass
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/IdentityOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/IdentityOperator.py
new file mode 100644
index 0000000..0f50e82
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/IdentityOperator.py
@@ -0,0 +1,42 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Mar 6 19:30:51 2019
+
+@author: evangelos
+"""
+
+from ccpi.optimisation.operators import LinearOperator
+
+
+class Identity(LinearOperator):
+
+ def __init__(self, gm_domain, gm_range=None):
+
+ self.gm_domain = gm_domain
+ self.gm_range = gm_range
+ if self.gm_range is None:
+ self.gm_range = self.gm_domain
+
+ super(Identity, self).__init__()
+
+ def direct(self,x,out=None):
+ if out is None:
+ return x.copy()
+ else:
+ out.fill(x)
+
+ def adjoint(self,x, out=None):
+ if out is None:
+ return x.copy()
+ else:
+ out.fill(x)
+
+ def norm(self):
+ return 1.0
+
+ def domain_geometry(self):
+ return self.gm_domain
+
+ def range_geometry(self):
+ return self.gm_range \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/LinearOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/LinearOperator.py
new file mode 100644
index 0000000..e19304f
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/LinearOperator.py
@@ -0,0 +1,22 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 15:57:52 2019
+
+@author: ofn77899
+"""
+
+from ccpi.optimisation.operators import Operator
+
+
+class LinearOperator(Operator):
+ '''A Linear Operator that maps from a space X <-> Y'''
+ def __init__(self):
+ super(LinearOperator, self).__init__()
+ def is_linear(self):
+ '''Returns if the operator is linear'''
+ return True
+ def adjoint(self,x, out=None):
+ '''returns the adjoint/inverse operation
+
+ only available to linear operators'''
+ raise NotImplementedError
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/Operator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/Operator.py
new file mode 100644
index 0000000..2d2089b
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/Operator.py
@@ -0,0 +1,30 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 15:55:56 2019
+
+@author: ofn77899
+"""
+from ccpi.optimisation.operators.ScaledOperator import ScaledOperator
+
+class Operator(object):
+ '''Operator that maps from a space X -> Y'''
+ def is_linear(self):
+ '''Returns if the operator is linear'''
+ return False
+ def direct(self,x, out=None):
+ '''Returns the application of the Operator on x'''
+ raise NotImplementedError
+ def norm(self):
+ '''Returns the norm of the Operator'''
+ raise NotImplementedError
+ def range_geometry(self):
+ '''Returns the range of the Operator: Y space'''
+ raise NotImplementedError
+ def domain_geometry(self):
+ '''Returns the domain of the Operator: X space'''
+ raise NotImplementedError
+ def __rmul__(self, scalar):
+ '''Defines the multiplication by a scalar on the left
+
+ returns a ScaledOperator'''
+ return ScaledOperator(self, scalar)
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/ScaledOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ScaledOperator.py
new file mode 100644
index 0000000..adcc6d9
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ScaledOperator.py
@@ -0,0 +1,42 @@
+from numbers import Number
+import numpy
+
+class ScaledOperator(object):
+ '''ScaledOperator
+
+ A class to represent the scalar multiplication of an Operator with a scalar.
+ It holds an operator and a scalar. Basically it returns the multiplication
+ of the result of direct and adjoint of the operator with the scalar.
+ For the rest it behaves like the operator it holds.
+
+ Args:
+ operator (Operator): a Operator or LinearOperator
+ scalar (Number): a scalar multiplier
+ Example:
+ The scaled operator behaves like the following:
+ sop = ScaledOperator(operator, scalar)
+ sop.direct(x) = scalar * operator.direct(x)
+ sop.adjoint(x) = scalar * operator.adjoint(x)
+ sop.norm() = operator.norm()
+ sop.range_geometry() = operator.range_geometry()
+ sop.domain_geometry() = operator.domain_geometry()
+ '''
+ def __init__(self, operator, scalar):
+ super(ScaledOperator, self).__init__()
+ if not isinstance (scalar, Number):
+ raise TypeError('expected scalar: got {}'.format(type(scalar)))
+ self.scalar = scalar
+ self.operator = operator
+ def direct(self, x, out=None):
+ return self.scalar * self.operator.direct(x, out=out)
+ def adjoint(self, x, out=None):
+ if self.operator.is_linear():
+ return self.scalar * self.operator.adjoint(x, out=out)
+ else:
+ raise TypeError('Operator is not linear')
+ def norm(self):
+ return numpy.abs(self.scalar) * self.operator.norm()
+ def range_geometry(self):
+ return self.operator.range_geometry()
+ def domain_geometry(self):
+ return self.operator.domain_geometry()
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/SymmetrizedGradientOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
new file mode 100644
index 0000000..d908e49
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
@@ -0,0 +1,118 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Mar 1 22:53:55 2019
+
+@author: evangelos
+"""
+
+from ccpi.optimisation.operators import Operator
+from ccpi.optimisation.operators import FiniteDiff
+from ccpi.optimisation.ops import PowerMethodNonsquare
+from ccpi.framework import ImageData, DataContainer
+import numpy as np
+
+
+class SymmetrizedGradient(Operator):
+
+ def __init__(self, gm_domain, gm_range, bnd_cond = 'Neumann', **kwargs):
+
+ super(SymmetrizedGradient, self).__init__()
+
+ self.gm_domain = gm_domain # Domain of Grad Operator
+ self.gm_range = gm_range # Range of Grad Operator
+ self.bnd_cond = bnd_cond # Boundary conditions of Finite Differences
+
+ # Kwargs Default options
+ self.memopt = kwargs.get('memopt',False)
+ self.correlation = kwargs.get('correlation','Space')
+
+ #TODO not tested yet, operator norm???
+ self.voxel_size = kwargs.get('voxel_size',[1]*len(gm_domain))
+
+
+ def direct(self, x, out=None):
+
+ tmp = np.zeros(self.gm_range)
+ tmp[0] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).adjoint(x.as_array()[0])
+ tmp[1] = FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).adjoint(x.as_array()[1])
+ tmp[2] = 0.5 * (FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).adjoint(x.as_array()[0]) +
+ FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).adjoint(x.as_array()[1]) )
+
+ return type(x)(tmp)
+
+
+ def adjoint(self, x, out=None):
+
+ tmp = np.zeros(self.gm_domain)
+
+ tmp[0] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).direct(x.as_array()[0]) + \
+ FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).direct(x.as_array()[2])
+
+ tmp[1] = FiniteDiff(self.gm_domain[1:], direction = 1, bnd_cond = self.bnd_cond).direct(x.as_array()[2]) + \
+ FiniteDiff(self.gm_domain[1:], direction = 0, bnd_cond = self.bnd_cond).direct(x.as_array()[1])
+
+ return type(x)(tmp)
+
+ def alloc_domain_dim(self):
+ return ImageData(np.zeros(self.gm_domain))
+
+ def alloc_range_dim(self):
+ return ImageData(np.zeros(self.range_dim))
+
+ def domain_dim(self):
+ return self.gm_domain
+
+ def range_dim(self):
+ return self.gm_range
+
+ def norm(self):
+# return np.sqrt(4*len(self.domainDim()))
+ #TODO this takes time for big ImageData
+ # for 2D ||grad|| = sqrt(8), 3D ||grad|| = sqrt(12)
+ x0 = ImageData(np.random.random_sample(self.domain_dim()))
+ self.s1, sall, svec = PowerMethodNonsquare(self, 25, x0)
+ return self.s1
+
+
+
+if __name__ == '__main__':
+
+ ###########################################################################
+ ## Symmetrized Gradient
+
+ N, M = 2, 3
+ ig = (N,M)
+ ig2 = (2,) + ig
+ ig3 = (3,) + ig
+ u1 = DataContainer(np.random.randint(10, size=ig2))
+ w1 = DataContainer(np.random.randint(10, size=ig3))
+
+ E = SymmetrizedGradient(ig2,ig3)
+
+ d1 = E.direct(u1)
+ d2 = E.adjoint(w1)
+
+ LHS = (d1.as_array()[0]*w1.as_array()[0] + \
+ d1.as_array()[1]*w1.as_array()[1] + \
+ 2*d1.as_array()[2]*w1.as_array()[2]).sum()
+
+ RHS = (u1.as_array()[0]*d2.as_array()[0] + \
+ u1.as_array()[1]*d2.as_array()[1]).sum()
+
+
+ print(LHS, RHS, E.norm())
+
+
+#
+
+
+
+
+
+
+
+
+
+
+ \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/ZeroOperator.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ZeroOperator.py
new file mode 100644
index 0000000..a7c5f09
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/ZeroOperator.py
@@ -0,0 +1,39 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Mar 6 19:25:53 2019
+
+@author: evangelos
+"""
+
+import numpy as np
+from ccpi.framework import ImageData
+from ccpi.optimisation.operators import Operator
+
+class ZeroOp(Operator):
+
+ def __init__(self, gm_domain, gm_range):
+ self.gm_domain = gm_domain
+ self.gm_range = gm_range
+ super(ZeroOp, self).__init__()
+
+ def direct(self,x,out=None):
+ if out is None:
+ return ImageData(np.zeros(self.gm_range))
+ else:
+ return ImageData(np.zeros(self.gm_range))
+
+ def adjoint(self,x, out=None):
+ if out is None:
+ return ImageData(np.zeros(self.gm_domain))
+ else:
+ return ImageData(np.zeros(self.gm_domain))
+
+ def norm(self):
+ return 0
+
+ def domain_dim(self):
+ return self.gm_domain
+
+ def range_dim(self):
+ return self.gm_range \ No newline at end of file
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/operators/__init__.py b/Wrappers/Python/build/lib/ccpi/optimisation/operators/__init__.py
new file mode 100644
index 0000000..1c09faf
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/operators/__init__.py
@@ -0,0 +1,19 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Mar 5 15:56:27 2019
+
+@author: ofn77899
+"""
+
+from .Operator import Operator
+from .LinearOperator import LinearOperator
+from .ScaledOperator import ScaledOperator
+from .BlockOperator import BlockOperator
+from .BlockScaledOperator import BlockScaledOperator
+
+
+from .FiniteDifferenceOperator import FiniteDiff
+from .GradientOperator import Gradient
+from .SymmetrizedGradientOperator import SymmetrizedGradient
+from .IdentityOperator import Identity
+from .ZeroOperator import ZeroOp
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/ops.py b/Wrappers/Python/build/lib/ccpi/optimisation/ops.py
new file mode 100644
index 0000000..6afb97a
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/ops.py
@@ -0,0 +1,294 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy
+from scipy.sparse.linalg import svds
+from ccpi.framework import DataContainer
+from ccpi.framework import AcquisitionData
+from ccpi.framework import ImageData
+from ccpi.framework import ImageGeometry
+from ccpi.framework import AcquisitionGeometry
+from numbers import Number
+# Maybe operators need to know what types they take as inputs/outputs
+# to not just use generic DataContainer
+
+
+class Operator(object):
+ '''Operator that maps from a space X -> Y'''
+ def __init__(self, **kwargs):
+ self.scalar = 1
+ def is_linear(self):
+ '''Returns if the operator is linear'''
+ return False
+ def direct(self,x, out=None):
+ raise NotImplementedError
+ def size(self):
+ # To be defined for specific class
+ raise NotImplementedError
+ def norm(self):
+ raise NotImplementedError
+ def allocate_direct(self):
+ '''Allocates memory on the Y space'''
+ raise NotImplementedError
+ def allocate_adjoint(self):
+ '''Allocates memory on the X space'''
+ raise NotImplementedError
+ def range_geometry(self):
+ raise NotImplementedError
+ def domain_geometry(self):
+ raise NotImplementedError
+ def __rmul__(self, other):
+ '''reverse multiplication of Operator with number sets the variable scalar in the Operator'''
+ assert isinstance(other, Number)
+ self.scalar = other
+ return self
+
+class LinearOperator(Operator):
+ '''Operator that maps from a space X -> Y'''
+ def is_linear(self):
+ '''Returns if the operator is linear'''
+ return True
+ def adjoint(self,x, out=None):
+ raise NotImplementedError
+
+class Identity(Operator):
+ def __init__(self):
+ self.s1 = 1.0
+ self.L = 1
+ super(Identity, self).__init__()
+
+ def direct(self,x,out=None):
+ if out is None:
+ return x.copy()
+ else:
+ out.fill(x)
+
+ def adjoint(self,x, out=None):
+ if out is None:
+ return x.copy()
+ else:
+ out.fill(x)
+
+ def size(self):
+ return NotImplemented
+
+ def get_max_sing_val(self):
+ return self.s1
+
+class TomoIdentity(Operator):
+ def __init__(self, geometry, **kwargs):
+ super(TomoIdentity, self).__init__()
+ self.s1 = 1.0
+ self.geometry = geometry
+
+ def is_linear(self):
+ return True
+ def direct(self,x,out=None):
+
+ if out is None:
+ if self.scalar != 1:
+ return x * self.scalar
+ return x.copy()
+ else:
+ if self.scalar != 1:
+ out.fill(x * self.scalar)
+ return
+ out.fill(x)
+ return
+
+ def adjoint(self,x, out=None):
+ return self.direct(x, out)
+
+ def size(self):
+ return NotImplemented
+
+ def get_max_sing_val(self):
+ return self.s1
+ def allocate_direct(self):
+ if issubclass(type(self.geometry), ImageGeometry):
+ return ImageData(geometry=self.geometry)
+ elif issubclass(type(self.geometry), AcquisitionGeometry):
+ return AcquisitionData(geometry=self.geometry)
+ else:
+ raise ValueError("Wrong geometry type: expected ImageGeometry of AcquisitionGeometry, got ", type(self.geometry))
+ def allocate_adjoint(self):
+ return self.allocate_direct()
+ def range_geometry(self):
+ return self.geometry
+ def domain_geometry(self):
+ return self.geometry
+
+
+
+class FiniteDiff2D(Operator):
+ def __init__(self):
+ self.s1 = 8.0
+ super(FiniteDiff2D, self).__init__()
+
+ def direct(self,x, out=None):
+ '''Forward differences with Neumann BC.'''
+ # FIXME this seems to be working only with numpy arrays
+
+ d1 = numpy.zeros_like(x.as_array())
+ d1[:,:-1] = x.as_array()[:,1:] - x.as_array()[:,:-1]
+ d2 = numpy.zeros_like(x.as_array())
+ d2[:-1,:] = x.as_array()[1:,:] - x.as_array()[:-1,:]
+ d = numpy.stack((d1,d2),0)
+ #x.geometry.voxel_num_z = 2
+ return type(x)(d,False,geometry=x.geometry)
+
+ def adjoint(self,x, out=None):
+ '''Backward differences, Neumann BC.'''
+ Nrows = x.get_dimension_size('horizontal_x')
+ Ncols = x.get_dimension_size('horizontal_y')
+ Nchannels = 1
+ if len(x.shape) == 4:
+ Nchannels = x.get_dimension_size('channel')
+ zer = numpy.zeros((Nrows,1))
+ xxx = x.as_array()[0,:,:-1]
+ #
+ h = numpy.concatenate((zer,xxx), 1)
+ h -= numpy.concatenate((xxx,zer), 1)
+
+ zer = numpy.zeros((1,Ncols))
+ xxx = x.as_array()[1,:-1,:]
+ #
+ v = numpy.concatenate((zer,xxx), 0)
+ v -= numpy.concatenate((xxx,zer), 0)
+ return type(x)(h + v, False, geometry=x.geometry)
+
+ def size(self):
+ return NotImplemented
+
+ def get_max_sing_val(self):
+ return self.s1
+
+def PowerMethodNonsquareOld(op,numiters):
+ # Initialise random
+ # Jakob's
+ #inputsize = op.size()[1]
+ #x0 = ImageContainer(numpy.random.randn(*inputsize)
+ # Edo's
+ #vg = ImageGeometry(voxel_num_x=inputsize[0],
+ # voxel_num_y=inputsize[1],
+ # voxel_num_z=inputsize[2])
+ #
+ #x0 = ImageData(geometry = vg, dimension_labels=['vertical','horizontal_y','horizontal_x'])
+ #print (x0)
+ #x0.fill(numpy.random.randn(*x0.shape))
+
+ x0 = op.create_image_data()
+
+ s = numpy.zeros(numiters)
+ # Loop
+ for it in numpy.arange(numiters):
+ x1 = op.adjoint(op.direct(x0))
+ x1norm = numpy.sqrt((x1**2).sum())
+ #print ("x0 **********" ,x0)
+ #print ("x1 **********" ,x1)
+ s[it] = (x1*x0).sum() / (x0*x0).sum()
+ x0 = (1.0/x1norm)*x1
+ return numpy.sqrt(s[-1]), numpy.sqrt(s), x0
+
+#def PowerMethod(op,numiters):
+# # Initialise random
+# x0 = np.random.randn(400)
+# s = np.zeros(numiters)
+# # Loop
+# for it in np.arange(numiters):
+# x1 = np.dot(op.transpose(),np.dot(op,x0))
+# x1norm = np.sqrt(np.sum(np.dot(x1,x1)))
+# s[it] = np.dot(x1,x0) / np.dot(x1,x0)
+# x0 = (1.0/x1norm)*x1
+# return s, x0
+
+
+def PowerMethodNonsquare(op,numiters , x0=None):
+ # Initialise random
+ # Jakob's
+ # inputsize , outputsize = op.size()
+ #x0 = ImageContainer(numpy.random.randn(*inputsize)
+ # Edo's
+ #vg = ImageGeometry(voxel_num_x=inputsize[0],
+ # voxel_num_y=inputsize[1],
+ # voxel_num_z=inputsize[2])
+ #
+ #x0 = ImageData(geometry = vg, dimension_labels=['vertical','horizontal_y','horizontal_x'])
+ #print (x0)
+ #x0.fill(numpy.random.randn(*x0.shape))
+
+ if x0 is None:
+ #x0 = op.create_image_data()
+ x0 = op.allocate_direct()
+ x0.fill(numpy.random.randn(*x0.shape))
+
+ s = numpy.zeros(numiters)
+ # Loop
+ for it in numpy.arange(numiters):
+ x1 = op.adjoint(op.direct(x0))
+ #x1norm = numpy.sqrt((x1*x1).sum())
+ x1norm = x1.norm()
+ #print ("x0 **********" ,x0)
+ #print ("x1 **********" ,x1)
+ s[it] = (x1*x0).sum() / (x0.squared_norm())
+ x0 = (1.0/x1norm)*x1
+ return numpy.sqrt(s[-1]), numpy.sqrt(s), x0
+
+class LinearOperatorMatrix(Operator):
+ def __init__(self,A):
+ self.A = A
+ self.s1 = None # Largest singular value, initially unknown
+ super(LinearOperatorMatrix, self).__init__()
+
+ def direct(self,x, out=None):
+ if out is None:
+ return type(x)(numpy.dot(self.A,x.as_array()))
+ else:
+ numpy.dot(self.A, x.as_array(), out=out.as_array())
+
+
+ def adjoint(self,x, out=None):
+ if out is None:
+ return type(x)(numpy.dot(self.A.transpose(),x.as_array()))
+ else:
+ numpy.dot(self.A.transpose(),x.as_array(), out=out.as_array())
+
+
+ def size(self):
+ return self.A.shape
+
+ def get_max_sing_val(self):
+ # If unknown, compute and store. If known, simply return it.
+ if self.s1 is None:
+ self.s1 = svds(self.A,1,return_singular_vectors=False)[0]
+ return self.s1
+ else:
+ return self.s1
+ def allocate_direct(self):
+ '''allocates the memory to hold the result of adjoint'''
+ #numpy.dot(self.A.transpose(),x.as_array())
+ M_A, N_A = self.A.shape
+ out = numpy.zeros((N_A,1))
+ return DataContainer(out)
+ def allocate_adjoint(self):
+ '''allocate the memory to hold the result of direct'''
+ #numpy.dot(self.A.transpose(),x.as_array())
+ M_A, N_A = self.A.shape
+ out = numpy.zeros((M_A,1))
+ return DataContainer(out)
diff --git a/Wrappers/Python/build/lib/ccpi/optimisation/spdhg.py b/Wrappers/Python/build/lib/ccpi/optimisation/spdhg.py
new file mode 100644
index 0000000..263a7cd
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/optimisation/spdhg.py
@@ -0,0 +1,338 @@
+# Copyright 2018 Matthias Ehrhardt, Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import numpy
+
+from ccpi.optimisation.funcs import Function
+from ccpi.framework import ImageData
+from ccpi.framework import AcquisitionData
+
+
+class spdhg():
+ """Computes a saddle point with a stochastic PDHG.
+
+ This means, a solution (x*, y*), y* = (y*_1, ..., y*_n) such that
+
+ (x*, y*) in arg min_x max_y sum_i=1^n <y_i, A_i> - f*[i](y_i) + g(x)
+
+ where g : X -> IR_infty and f[i] : Y[i] -> IR_infty are convex, l.s.c. and
+ proper functionals. For this algorithm, they all may be non-smooth and no
+ strong convexity is assumed.
+
+ Parameters
+ ----------
+ f : list of functions
+ Functionals Y[i] -> IR_infty that all have a convex conjugate with a
+ proximal operator, i.e.
+ f[i].convex_conj.prox(sigma[i]) : Y[i] -> Y[i].
+ g : function
+ Functional X -> IR_infty that has a proximal operator, i.e.
+ g.prox(tau) : X -> X.
+ A : list of functions
+ Operators A[i] : X -> Y[i] that possess adjoints: A[i].adjoint
+ x : primal variable, optional
+ By default equals 0.
+ y : dual variable, optional
+ Part of a product space. By default equals 0.
+ z : variable, optional
+ Adjoint of dual variable, z = A^* y. By default equals 0 if y = 0.
+ tau : scalar / vector / matrix, optional
+ Step size for primal variable. Note that the proximal operator of g
+ has to be well-defined for this input.
+ sigma : scalar, optional
+ Scalar / vector / matrix used as step size for dual variable. Note that
+ the proximal operator related to f (see above) has to be well-defined
+ for this input.
+ prob : list of scalars, optional
+ Probabilities prob[i] that a subset i is selected in each iteration.
+ If fun_select is not given, then the sum of all probabilities must
+ equal 1.
+ A_norms : list of scalars, optional
+ Norms of the operators in A. Can be used to determine the step sizes
+ tau and sigma and the probabilities prob.
+ fun_select : function, optional
+ Function that selects blocks at every iteration IN -> {1,...,n}. By
+ default this is serial sampling, fun_select(k) selects an index
+ i \in {1,...,n} with probability prob[i].
+
+ References
+ ----------
+ [CERS2018] A. Chambolle, M. J. Ehrhardt, P. Richtarik and C.-B. Schoenlieb,
+ *Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling
+ and Imaging Applications*. SIAM Journal on Optimization, 28(4), 2783-2808
+ (2018) http://doi.org/10.1007/s10851-010-0251-1
+
+ [E+2017] M. J. Ehrhardt, P. J. Markiewicz, P. Richtarik, J. Schott,
+ A. Chambolle and C.-B. Schoenlieb, *Faster PET reconstruction with a
+ stochastic primal-dual hybrid gradient method*. Wavelets and Sparsity XVII,
+ 58 (2017) http://doi.org/10.1117/12.2272946.
+
+ [EMS2018] M. J. Ehrhardt, P. J. Markiewicz and C.-B. Schoenlieb, *Faster
+ PET Reconstruction with Non-Smooth Priors by Randomization and
+ Preconditioning*. (2018) ArXiv: http://arxiv.org/abs/1808.07150
+ """
+
+ def __init__(self, f, g, A, x=None, y=None, z=None, tau=None, sigma=None,
+ prob=None, A_norms=None, fun_select=None):
+ # fun_select is optional and by default performs serial sampling
+
+ if x is None:
+ x = A[0].allocate_direct(0)
+
+ if y is None:
+ if z is not None:
+ raise ValueError('y and z have to be defaulted together')
+
+ y = [Ai.allocate_adjoint(0) for Ai in A]
+ z = 0 * x.copy()
+
+ else:
+ if z is None:
+ raise ValueError('y and z have to be defaulted together')
+
+ if A_norms is not None:
+ if tau is not None or sigma is not None or prob is not None:
+ raise ValueError('Either A_norms or (tau, sigma, prob) must '
+ 'be given')
+
+ tau = 1 / sum(A_norms)
+ sigma = [1 / nA for nA in A_norms]
+ prob = [nA / sum(A_norms) for nA in A_norms]
+
+ #uniform prob, needs different sigma and tau
+ #n = len(A)
+ #prob = [1./n] * n
+
+ if fun_select is None:
+ if prob is None:
+ raise ValueError('prob was not determined')
+
+ def fun_select(k):
+ return [int(numpy.random.choice(len(A), 1, p=prob))]
+
+ self.iter = 0
+ self.x = x
+
+ self.y = y
+ self.z = z
+
+ self.f = f
+ self.g = g
+ self.A = A
+ self.tau = tau
+ self.sigma = sigma
+ self.prob = prob
+ self.fun_select = fun_select
+
+ # Initialize variables
+ self.z_relax = z.copy()
+ self.tmp = self.x.copy()
+
+ def update(self):
+ # select block
+ selected = self.fun_select(self.iter)
+
+ # update primal variable
+ #tmp = (self.x - self.tau * self.z_relax).as_array()
+ #self.x.fill(self.g.prox(tmp, self.tau))
+ self.tmp = - self.tau * self.z_relax
+ self.tmp += self.x
+ self.x = self.g.prox(self.tmp, self.tau)
+
+ # update dual variable and z, z_relax
+ self.z_relax = self.z.copy()
+ for i in selected:
+ # save old yi
+ y_old = self.y[i].copy()
+
+ # y[i]= prox(tmp)
+ tmp = y_old + self.sigma[i] * self.A[i].direct(self.x)
+ self.y[i] = self.f[i].convex_conj.prox(tmp, self.sigma[i])
+
+ # update adjoint of dual variable
+ dz = self.A[i].adjoint(self.y[i] - y_old)
+ self.z += dz
+
+ # compute extrapolation
+ self.z_relax += (1 + 1 / self.prob[i]) * dz
+
+ self.iter += 1
+
+
+## Functions
+
+class KullbackLeibler(Function):
+ def __init__(self, data, background):
+ self.data = data
+ self.background = background
+ self.__offset = None
+
+ def __call__(self, x):
+ """Return the KL-diveregnce in the point ``x``.
+
+ If any components of ``x`` is non-positive, the value is positive
+ infinity.
+
+ Needs one extra array of memory of the size of `prior`.
+ """
+
+ # define short variable names
+ y = self.data
+ r = self.background
+
+ # Compute
+ # sum(x + r - y + y * log(y / (x + r)))
+ # = sum(x - y * log(x + r)) + self.offset
+ # Assume that
+ # x + r > 0
+
+ # sum the result up
+ obj = numpy.sum(x - y * numpy.log(x + r)) + self.offset()
+
+ if numpy.isnan(obj):
+ # In this case, some element was less than or equal to zero
+ return numpy.inf
+ else:
+ return obj
+
+ @property
+ def convex_conj(self):
+ """The convex conjugate functional of the KL-functional."""
+ return KullbackLeiblerConvexConjugate(self.data, self.background)
+
+ def offset(self):
+ """The offset which is independent of the unknown."""
+
+ if self.__offset is None:
+ tmp = self.domain.element()
+
+ # define short variable names
+ y = self.data
+ r = self.background
+
+ tmp = self.domain.element(numpy.maximum(y, 1))
+ tmp = r - y + y * numpy.log(tmp)
+
+ # sum the result up
+ self.__offset = numpy.sum(tmp)
+
+ return self.__offset
+
+# def __repr__(self):
+# """to be added???"""
+# """Return ``repr(self)``."""
+ # return '{}({!r}, {!r}, {!r})'.format(self.__class__.__name__,
+ ## self.domain, self.data,
+ # self.background)
+
+
+class KullbackLeiblerConvexConjugate(Function):
+ """The convex conjugate of Kullback-Leibler divergence functional.
+
+ Notes
+ -----
+ The functional :math:`F^*` with prior :math:`g>0` is given by:
+
+ .. math::
+ F^*(x)
+ =
+ \\begin{cases}
+ \\sum_{i} \left( -g_i \ln(1 - x_i) \\right)
+ & \\text{if } x_i < 1 \\forall i
+ \\\\
+ +\\infty & \\text{else}
+ \\end{cases}
+
+ See Also
+ --------
+ KullbackLeibler : convex conjugate functional
+ """
+
+ def __init__(self, data, background):
+ self.data = data
+ self.background = background
+
+ def __call__(self, x):
+ y = self.data
+ r = self.background
+
+ tmp = numpy.sum(- x * r - y * numpy.log(1 - x))
+
+ if numpy.isnan(tmp):
+ # In this case, some element was larger than or equal to one
+ return numpy.inf
+ else:
+ return tmp
+
+
+ def prox(self, x, tau, out=None):
+ # Let y = data, r = background, z = x + tau * r
+ # Compute 0.5 * (z + 1 - sqrt((z - 1)**2 + 4 * tau * y))
+ # Currently it needs 3 extra copies of memory.
+
+ if out is None:
+ out = x.copy()
+
+ # define short variable names
+ try: # this should be standard SIRF/CIL mode
+ y = self.data.as_array()
+ r = self.background.as_array()
+ x = x.as_array()
+
+ try:
+ taua = tau.as_array()
+ except:
+ taua = tau
+
+ z = x + tau * r
+
+ out.fill(0.5 * (z + 1 - numpy.sqrt((z - 1) ** 2 + 4 * taua * y)))
+
+ return out
+
+ except: # e.g. for NumPy
+ y = self.data
+ r = self.background
+
+ try:
+ taua = tau.as_array()
+ except:
+ taua = tau
+
+ z = x + tau * r
+
+ out[:] = 0.5 * (z + 1 - numpy.sqrt((z - 1) ** 2 + 4 * taua * y))
+
+ return out
+
+ @property
+ def convex_conj(self):
+ return KullbackLeibler(self.data, self.background)
+
+
+def mult(x, y):
+ try:
+ xa = x.as_array()
+ except:
+ xa = x
+
+ out = y.clone()
+ out.fill(xa * y.as_array())
+
+ return out
diff --git a/Wrappers/Python/build/lib/ccpi/processors.py b/Wrappers/Python/build/lib/ccpi/processors.py
new file mode 100644
index 0000000..ccef410
--- /dev/null
+++ b/Wrappers/Python/build/lib/ccpi/processors.py
@@ -0,0 +1,514 @@
+# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License
+
+from ccpi.framework import DataProcessor, DataContainer, AcquisitionData,\
+ AcquisitionGeometry, ImageGeometry, ImageData
+from ccpi.reconstruction.parallelbeam import alg as pbalg
+import numpy
+from scipy import ndimage
+
+import matplotlib.pyplot as plt
+
+
+class Normalizer(DataProcessor):
+ '''Normalization based on flat and dark
+
+ This processor read in a AcquisitionData and normalises it based on
+ the instrument reading with and without incident photons or neutrons.
+
+ Input: AcquisitionData
+ Parameter: 2D projection with flat field (or stack)
+ 2D projection with dark field (or stack)
+ Output: AcquisitionDataSetn
+ '''
+
+ def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5):
+ kwargs = {
+ 'flat_field' : flat_field,
+ 'dark_field' : dark_field,
+ # very small number. Used when there is a division by zero
+ 'tolerance' : tolerance
+ }
+
+ #DataProcessor.__init__(self, **kwargs)
+ super(Normalizer, self).__init__(**kwargs)
+ if not flat_field is None:
+ self.set_flat_field(flat_field)
+ if not dark_field is None:
+ self.set_dark_field(dark_field)
+
+ def check_input(self, dataset):
+ if dataset.number_of_dimensions == 3 or\
+ dataset.number_of_dimensions == 2:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+ def set_dark_field(self, df):
+ if type(df) is numpy.ndarray:
+ if len(numpy.shape(df)) == 3:
+ raise ValueError('Dark Field should be 2D')
+ elif len(numpy.shape(df)) == 2:
+ self.dark_field = df
+ elif issubclass(type(df), DataContainer):
+ self.dark_field = self.set_dark_field(df.as_array())
+
+ def set_flat_field(self, df):
+ if type(df) is numpy.ndarray:
+ if len(numpy.shape(df)) == 3:
+ raise ValueError('Flat Field should be 2D')
+ elif len(numpy.shape(df)) == 2:
+ self.flat_field = df
+ elif issubclass(type(df), DataContainer):
+ self.flat_field = self.set_flat_field(df.as_array())
+
+ @staticmethod
+ def normalize_projection(projection, flat, dark, tolerance):
+ a = (projection - dark)
+ b = (flat-dark)
+ with numpy.errstate(divide='ignore', invalid='ignore'):
+ c = numpy.true_divide( a, b )
+ c[ ~ numpy.isfinite( c )] = tolerance # set to not zero if 0/0
+ return c
+
+ @staticmethod
+ def estimate_normalised_error(projection, flat, dark, delta_flat, delta_dark):
+ '''returns the estimated relative error of the normalised projection
+
+ n = (projection - dark) / (flat - dark)
+ Dn/n = (flat-dark + projection-dark)/((flat-dark)*(projection-dark))*(Df/f + Dd/d)
+ '''
+ a = (projection - dark)
+ b = (flat-dark)
+ df = delta_flat / flat
+ dd = delta_dark / dark
+ rel_norm_error = (b + a) / (b * a) * (df + dd)
+ return rel_norm_error
+
+ def process(self, out=None):
+
+ projections = self.get_input()
+ dark = self.dark_field
+ flat = self.flat_field
+
+ if projections.number_of_dimensions == 3:
+ if not (projections.shape[1:] == dark.shape and \
+ projections.shape[1:] == flat.shape):
+ raise ValueError('Flats/Dark and projections size do not match.')
+
+
+ a = numpy.asarray(
+ [ Normalizer.normalize_projection(
+ projection, flat, dark, self.tolerance) \
+ for projection in projections.as_array() ]
+ )
+ elif projections.number_of_dimensions == 2:
+ a = Normalizer.normalize_projection(projections.as_array(),
+ flat, dark, self.tolerance)
+ y = type(projections)( a , True,
+ dimension_labels=projections.dimension_labels,
+ geometry=projections.geometry)
+ return y
+
+
+class CenterOfRotationFinder(DataProcessor):
+ '''Processor to find the center of rotation in a parallel beam experiment
+
+ This processor read in a AcquisitionDataSet and finds the center of rotation
+ based on Nghia Vo's method. https://doi.org/10.1364/OE.22.019078
+
+ Input: AcquisitionDataSet
+
+ Output: float. center of rotation in pixel coordinate
+ '''
+
+ def __init__(self):
+ kwargs = {
+
+ }
+
+ #DataProcessor.__init__(self, **kwargs)
+ super(CenterOfRotationFinder, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ if dataset.number_of_dimensions == 3:
+ if dataset.geometry.geom_type == 'parallel':
+ return True
+ else:
+ raise ValueError('{0} is suitable only for parallel beam geometry'\
+ .format(self.__class__.__name__))
+ else:
+ raise ValueError("Expected input dimensions is 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+
+ # #########################################################################
+ # Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved. #
+ # #
+ # Copyright 2015. UChicago Argonne, LLC. This software was produced #
+ # under U.S. Government contract DE-AC02-06CH11357 for Argonne National #
+ # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the #
+ # U.S. Department of Energy. The U.S. Government has rights to use, #
+ # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR #
+ # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR #
+ # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is #
+ # modified to produce derivative works, such modified software should #
+ # be clearly marked, so as not to confuse it with the version available #
+ # from ANL. #
+ # #
+ # Additionally, redistribution and use in source and binary forms, with #
+ # or without modification, are permitted provided that the following #
+ # conditions are met: #
+ # #
+ # * Redistributions of source code must retain the above copyright #
+ # notice, this list of conditions and the following disclaimer. #
+ # #
+ # * Redistributions in binary form must reproduce the above copyright #
+ # notice, this list of conditions and the following disclaimer in #
+ # the documentation and/or other materials provided with the #
+ # distribution. #
+ # #
+ # * Neither the name of UChicago Argonne, LLC, Argonne National #
+ # Laboratory, ANL, the U.S. Government, nor the names of its #
+ # contributors may be used to endorse or promote products derived #
+ # from this software without specific prior written permission. #
+ # #
+ # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS #
+ # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #
+ # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS #
+ # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago #
+ # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, #
+ # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, #
+ # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; #
+ # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #
+ # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT #
+ # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN #
+ # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE #
+ # POSSIBILITY OF SUCH DAMAGE. #
+ # #########################################################################
+
+ @staticmethod
+ def as_ndarray(arr, dtype=None, copy=False):
+ if not isinstance(arr, numpy.ndarray):
+ arr = numpy.array(arr, dtype=dtype, copy=copy)
+ return arr
+
+ @staticmethod
+ def as_dtype(arr, dtype, copy=False):
+ if not arr.dtype == dtype:
+ arr = numpy.array(arr, dtype=dtype, copy=copy)
+ return arr
+
+ @staticmethod
+ def as_float32(arr):
+ arr = CenterOfRotationFinder.as_ndarray(arr, numpy.float32)
+ return CenterOfRotationFinder.as_dtype(arr, numpy.float32)
+
+
+
+
+ @staticmethod
+ def find_center_vo(tomo, ind=None, smin=-40, smax=40, srad=10, step=0.5,
+ ratio=2., drop=20):
+ """
+ Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`.
+
+ Parameters
+ ----------
+ tomo : ndarray
+ 3D tomographic data.
+ ind : int, optional
+ Index of the slice to be used for reconstruction.
+ smin, smax : int, optional
+ Reference to the horizontal center of the sinogram.
+ srad : float, optional
+ Fine search radius.
+ step : float, optional
+ Step of fine searching.
+ ratio : float, optional
+ The ratio between the FOV of the camera and the size of object.
+ It's used to generate the mask.
+ drop : int, optional
+ Drop lines around vertical center of the mask.
+
+ Returns
+ -------
+ float
+ Rotation axis location.
+
+ Notes
+ -----
+ The function may not yield a correct estimate, if:
+
+ - the sample size is bigger than the field of view of the camera.
+ In this case the ``ratio`` argument need to be set larger
+ than the default of 2.0.
+
+ - there is distortion in the imaging hardware. If there's
+ no correction applied, the center of the projection image may
+ yield a better estimate.
+
+ - the sample contrast is weak. Paganin's filter need to be applied
+ to overcome this.
+
+ - the sample was changed during the scan.
+ """
+ tomo = CenterOfRotationFinder.as_float32(tomo)
+
+ if ind is None:
+ ind = tomo.shape[1] // 2
+ _tomo = tomo[:, ind, :]
+
+
+
+ # Reduce noise by smooth filters. Use different filters for coarse and fine search
+ _tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1))
+ _tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2))
+
+ # Coarse and fine searches for finding the rotation center.
+ if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k)
+ #_tomo_coarse = downsample(numpy.expand_dims(_tomo_cs,1), level=2)[:, 0, :]
+ #init_cen = _search_coarse(_tomo_coarse, smin, smax, ratio, drop)
+ #fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop)
+ init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, smin,
+ smax, ratio, drop)
+ fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
+ step, init_cen,
+ ratio, drop)
+ else:
+ init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs,
+ smin, smax,
+ ratio, drop)
+ fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
+ step, init_cen,
+ ratio, drop)
+
+ #logger.debug('Rotation center search finished: %i', fine_cen)
+ return fine_cen
+
+
+ @staticmethod
+ def _search_coarse(sino, smin, smax, ratio, drop):
+ """
+ Coarse search for finding the rotation center.
+ """
+ (Nrow, Ncol) = sino.shape
+ centerfliplr = (Ncol - 1.0) / 2.0
+
+ # Copy the sinogram and flip left right, the purpose is to
+ # make a full [0;2Pi] sinogram
+ _copy_sino = numpy.fliplr(sino[1:])
+
+ # This image is used for compensating the shift of sinogram 2
+ temp_img = numpy.zeros((Nrow - 1, Ncol), dtype='float32')
+ temp_img[:] = sino[-1]
+
+ # Start coarse search in which the shift step is 1
+ listshift = numpy.arange(smin, smax + 1)
+ listmetric = numpy.zeros(len(listshift), dtype='float32')
+ mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol,
+ 0.5 * ratio * Ncol, drop)
+ for i in listshift:
+ _sino = numpy.roll(_copy_sino, i, axis=1)
+ if i >= 0:
+ _sino[:, 0:i] = temp_img[:, 0:i]
+ else:
+ _sino[:, i:] = temp_img[:, i:]
+ listmetric[i - smin] = numpy.sum(numpy.abs(numpy.fft.fftshift(
+ #pyfftw.interfaces.numpy_fft.fft2(
+ # numpy.vstack((sino, _sino)))
+ numpy.fft.fft2(numpy.vstack((sino, _sino)))
+ )) * mask)
+ minpos = numpy.argmin(listmetric)
+ return centerfliplr + listshift[minpos] / 2.0
+
+ @staticmethod
+ def _search_fine(sino, srad, step, init_cen, ratio, drop):
+ """
+ Fine search for finding the rotation center.
+ """
+ Nrow, Ncol = sino.shape
+ centerfliplr = (Ncol + 1.0) / 2.0 - 1.0
+ # Use to shift the sinogram 2 to the raw CoR.
+ shiftsino = numpy.int16(2 * (init_cen - centerfliplr))
+ _copy_sino = numpy.roll(numpy.fliplr(sino[1:]), shiftsino, axis=1)
+ if init_cen <= centerfliplr:
+ lefttake = numpy.int16(numpy.ceil(srad + 1))
+ righttake = numpy.int16(numpy.floor(2 * init_cen - srad - 1))
+ else:
+ lefttake = numpy.int16(numpy.ceil(
+ init_cen - (Ncol - 1 - init_cen) + srad + 1))
+ righttake = numpy.int16(numpy.floor(Ncol - 1 - srad - 1))
+ Ncol1 = righttake - lefttake + 1
+ mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol1,
+ 0.5 * ratio * Ncol, drop)
+ numshift = numpy.int16((2 * srad) / step) + 1
+ listshift = numpy.linspace(-srad, srad, num=numshift)
+ listmetric = numpy.zeros(len(listshift), dtype='float32')
+ factor1 = numpy.mean(sino[-1, lefttake:righttake])
+ num1 = 0
+ for i in listshift:
+ _sino = ndimage.interpolation.shift(
+ _copy_sino, (0, i), prefilter=False)
+ factor2 = numpy.mean(_sino[0,lefttake:righttake])
+ _sino = _sino * factor1 / factor2
+ sinojoin = numpy.vstack((sino, _sino))
+ listmetric[num1] = numpy.sum(numpy.abs(numpy.fft.fftshift(
+ #pyfftw.interfaces.numpy_fft.fft2(
+ # sinojoin[:, lefttake:righttake + 1])
+ numpy.fft.fft2(sinojoin[:, lefttake:righttake + 1])
+ )) * mask)
+ num1 = num1 + 1
+ minpos = numpy.argmin(listmetric)
+ return init_cen + listshift[minpos] / 2.0
+
+ @staticmethod
+ def _create_mask(nrow, ncol, radius, drop):
+ du = 1.0 / ncol
+ dv = (nrow - 1.0) / (nrow * 2.0 * numpy.pi)
+ centerrow = numpy.ceil(nrow / 2) - 1
+ centercol = numpy.ceil(ncol / 2) - 1
+ # added by Edoardo Pasca
+ centerrow = int(centerrow)
+ centercol = int(centercol)
+ mask = numpy.zeros((nrow, ncol), dtype='float32')
+ for i in range(nrow):
+ num1 = numpy.round(((i - centerrow) * dv / radius) / du)
+ (p1, p2) = numpy.int16(numpy.clip(numpy.sort(
+ (-num1 + centercol, num1 + centercol)), 0, ncol - 1))
+ mask[i, p1:p2 + 1] = numpy.ones(p2 - p1 + 1, dtype='float32')
+ if drop < centerrow:
+ mask[centerrow - drop:centerrow + drop + 1,
+ :] = numpy.zeros((2 * drop + 1, ncol), dtype='float32')
+ mask[:,centercol-1:centercol+2] = numpy.zeros((nrow, 3), dtype='float32')
+ return mask
+
+ def process(self, out=None):
+
+ projections = self.get_input()
+
+ cor = CenterOfRotationFinder.find_center_vo(projections.as_array())
+
+ return cor
+
+
+class AcquisitionDataPadder(DataProcessor):
+ '''Normalization based on flat and dark
+
+ This processor read in a AcquisitionData and normalises it based on
+ the instrument reading with and without incident photons or neutrons.
+
+ Input: AcquisitionData
+ Parameter: 2D projection with flat field (or stack)
+ 2D projection with dark field (or stack)
+ Output: AcquisitionDataSetn
+ '''
+
+ def __init__(self,
+ center_of_rotation = None,
+ acquisition_geometry = None,
+ pad_value = 1e-5):
+ kwargs = {
+ 'acquisition_geometry' : acquisition_geometry,
+ 'center_of_rotation' : center_of_rotation,
+ 'pad_value' : pad_value
+ }
+
+ super(AcquisitionDataPadder, self).__init__(**kwargs)
+
+ def check_input(self, dataset):
+ if self.acquisition_geometry is None:
+ self.acquisition_geometry = dataset.geometry
+ if dataset.number_of_dimensions == 3:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+ def process(self, out=None):
+ projections = self.get_input()
+ w = projections.get_dimension_size('horizontal')
+ delta = w - 2 * self.center_of_rotation
+
+ padded_width = int (
+ numpy.ceil(abs(delta)) + w
+ )
+ delta_pix = padded_width - w
+
+ voxel_per_pixel = 1
+ geom = pbalg.pb_setup_geometry_from_acquisition(projections.as_array(),
+ self.acquisition_geometry.angles,
+ self.center_of_rotation,
+ voxel_per_pixel )
+
+ padded_geometry = self.acquisition_geometry.clone()
+
+ padded_geometry.pixel_num_h = geom['n_h']
+ padded_geometry.pixel_num_v = geom['n_v']
+
+ delta_pix_h = padded_geometry.pixel_num_h - self.acquisition_geometry.pixel_num_h
+ delta_pix_v = padded_geometry.pixel_num_v - self.acquisition_geometry.pixel_num_v
+
+ if delta_pix_h == 0:
+ delta_pix_h = delta_pix
+ padded_geometry.pixel_num_h = padded_width
+ #initialize a new AcquisitionData with values close to 0
+ out = AcquisitionData(geometry=padded_geometry)
+ out = out + self.pad_value
+
+
+ #pad in the horizontal-vertical plane -> slice on angles
+ if delta > 0:
+ #pad left of middle
+ command = "out.array["
+ for i in range(out.number_of_dimensions):
+ if out.dimension_labels[i] == 'horizontal':
+ value = '{0}:{1}'.format(delta_pix_h, delta_pix_h+w)
+ command = command + str(value)
+ else:
+ if out.dimension_labels[i] == 'vertical' :
+ value = '{0}:'.format(delta_pix_v)
+ command = command + str(value)
+ else:
+ command = command + ":"
+ if i < out.number_of_dimensions -1:
+ command = command + ','
+ command = command + '] = projections.array'
+ #print (command)
+ else:
+ #pad right of middle
+ command = "out.array["
+ for i in range(out.number_of_dimensions):
+ if out.dimension_labels[i] == 'horizontal':
+ value = '{0}:{1}'.format(0, w)
+ command = command + str(value)
+ else:
+ if out.dimension_labels[i] == 'vertical' :
+ value = '{0}:'.format(delta_pix_v)
+ command = command + str(value)
+ else:
+ command = command + ":"
+ if i < out.number_of_dimensions -1:
+ command = command + ','
+ command = command + '] = projections.array'
+ #print (command)
+ #cleaned = eval(command)
+ exec(command)
+ return out \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/optimisation/functions/Function.py b/Wrappers/Python/ccpi/optimisation/functions/Function.py
index 82f24a6..ba33666 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/Function.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/Function.py
@@ -59,7 +59,7 @@ class Function(object):
'''Alias of proximal(x, tau, None)'''
warnings.warn('''This method will disappear in following
versions of the CIL. Use proximal instead''', DeprecationWarning)
- return self.proximal(x, out=None)
+ return self.proximal(x, tau, out=None)
def __rmul__(self, scalar):
'''Defines the multiplication by a scalar on the left
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
index 5489d92..597d4d8 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
@@ -1,12 +1,21 @@
# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 7 13:10:56 2019
+# Copyright 2018-2019 Evangelos Papoutsellis and Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
-@author: evangelos
-"""
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
import numpy
from ccpi.optimisation.functions import Function
@@ -75,10 +84,10 @@ class L2NormSquared(Function):
if out is None:
# FIXME: this is a number
- return (1/4) * x.squared_norm() + tmp
+ return (1./4.) * x.squared_norm() + tmp
else:
# FIXME: this is a DataContainer
- out.fill((1/4) * x.squared_norm() + tmp)
+ out.fill((1./4.) * x.squared_norm() + tmp)
def proximal(self, x, tau, out = None):
diff --git a/Wrappers/Python/ccpi/optimisation/ops.py b/Wrappers/Python/ccpi/optimisation/ops.py
index 6afb97a..fcd0d9e 100755
--- a/Wrappers/Python/ccpi/optimisation/ops.py
+++ b/Wrappers/Python/ccpi/optimisation/ops.py
@@ -115,8 +115,8 @@ class TomoIdentity(Operator):
def adjoint(self,x, out=None):
return self.direct(x, out)
- def size(self):
- return NotImplemented
+ def norm(self):
+ return self.s1
def get_max_sing_val(self):
return self.s1
diff --git a/Wrappers/Python/test/test_algorithms.py b/Wrappers/Python/test/test_algorithms.py
index b5959b5..a35ffc1 100755
--- a/Wrappers/Python/test/test_algorithms.py
+++ b/Wrappers/Python/test/test_algorithms.py
@@ -86,6 +86,7 @@ class TestAlgorithms(unittest.TestCase):
identity = TomoIdentity(geometry=ig)
norm2sq = Norm2sq(identity, b)
+ norm2sq.L = 2 * norm2sq.c * identity.norm()**2
opt = {'tol': 1e-4, 'memopt':False}
alg = FISTA(x_init=x_init, f=norm2sq, g=None, opt=opt)
alg.max_iteration = 2
diff --git a/Wrappers/Python/test/test_functions.py b/Wrappers/Python/test/test_functions.py
index 3e5f26f..54dfa57 100644
--- a/Wrappers/Python/test/test_functions.py
+++ b/Wrappers/Python/test/test_functions.py
@@ -62,7 +62,7 @@ class TestFunction(unittest.TestCase):
self.assertEqual(a2, g(d))
# Compare convex conjugate of g
- a3 = 0.5 * d.power(2).sum() + (d*noisy_data).sum()
+ a3 = 0.5 * d.squared_norm() + d.dot(noisy_data)
self.assertEqual(a3, g.convex_conjugate(d))
#print( a3, g.convex_conjugate(d))
@@ -91,12 +91,12 @@ class TestFunction(unittest.TestCase):
#check convex conjuagate no data
c1 = f.convex_conjugate(u)
- c2 = 1/4 * u.squared_norm()
+ c2 = 1/4. * u.squared_norm()
numpy.testing.assert_equal(c1, c2)
#check convex conjuagate with data
d1 = f1.convex_conjugate(u)
- d2 = (1/4) * u.squared_norm() + (u*b).sum()
+ d2 = (1./4.) * u.squared_norm() + (u*b).sum()
numpy.testing.assert_equal(d1, d2)
# check proximal no data
diff --git a/Wrappers/Python/test/test_run_test.py b/Wrappers/Python/test/test_run_test.py
index 3c7d9ab..8cef925 100755
--- a/Wrappers/Python/test/test_run_test.py
+++ b/Wrappers/Python/test/test_run_test.py
@@ -9,7 +9,7 @@ from ccpi.framework import AcquisitionGeometry
from ccpi.optimisation.algs import FISTA
from ccpi.optimisation.algs import FBPD
from ccpi.optimisation.funcs import Norm2sq
-from ccpi.optimisation.funcs import ZeroFun
+from ccpi.optimisation.functions import ZeroFun
from ccpi.optimisation.funcs import Norm1
from ccpi.optimisation.funcs import TV2D
from ccpi.optimisation.funcs import Norm2