diff options
author | Jakob Jorgensen, WS at HMXIF <jakob.jorgensen@manchester.ac.uk> | 2019-04-30 22:38:20 +0100 |
---|---|---|
committer | Jakob Jorgensen, WS at HMXIF <jakob.jorgensen@manchester.ac.uk> | 2019-04-30 22:38:20 +0100 |
commit | a9ec78c1669f460ebaf5227600f8b0c082cfcf56 (patch) | |
tree | 95a1a4ce2436dddfa264f5dcecd6ce13296e548b /Wrappers/Python | |
parent | 376e12c567f045169119f87f82efc196570753ad (diff) | |
download | framework-a9ec78c1669f460ebaf5227600f8b0c082cfcf56.tar.gz framework-a9ec78c1669f460ebaf5227600f8b0c082cfcf56.tar.bz2 framework-a9ec78c1669f460ebaf5227600f8b0c082cfcf56.tar.xz framework-a9ec78c1669f460ebaf5227600f8b0c082cfcf56.zip |
Fix dot product bug
Diffstat (limited to 'Wrappers/Python')
-rwxr-xr-x | Wrappers/Python/ccpi/framework/framework.py | 3 | ||||
-rw-r--r-- | Wrappers/Python/wip/compare_CGLS_algos.py | 127 |
2 files changed, 129 insertions, 1 deletions
diff --git a/Wrappers/Python/ccpi/framework/framework.py b/Wrappers/Python/ccpi/framework/framework.py index ffc91ae..e278795 100755 --- a/Wrappers/Python/ccpi/framework/framework.py +++ b/Wrappers/Python/ccpi/framework/framework.py @@ -765,7 +765,8 @@ class DataContainer(object): def dot(self, other, *args, **kwargs): '''return the inner product of 2 DataContainers viewed as vectors''' if self.shape == other.shape: - return numpy.dot(self.as_array().ravel(), other.as_array().ravel()) + return (self*other).sum() + #return numpy.dot(self.as_array().ravel(), other.as_array().ravel()) else: raise ValueError('Shapes are not aligned: {} != {}'.format(self.shape, other.shape)) diff --git a/Wrappers/Python/wip/compare_CGLS_algos.py b/Wrappers/Python/wip/compare_CGLS_algos.py new file mode 100644 index 0000000..333805d --- /dev/null +++ b/Wrappers/Python/wip/compare_CGLS_algos.py @@ -0,0 +1,127 @@ +# This demo illustrates how to use the SIRT algorithm without and with +# nonnegativity and box constraints. The ASTRA 2D projectors are used. + +# First make all imports +from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, \ + AcquisitionData +from ccpi.optimisation.algs import FISTA, FBPD, CGLS, SIRT +from ccpi.astra.ops import AstraProjectorSimple + +from ccpi.optimisation.algorithms import CGLS as CGLSalg + +import numpy as np +import matplotlib.pyplot as plt + +# Choose either a parallel-beam (1=parallel2D) or fan-beam (2=cone2D) test case +test_case = 1 + +# Set up phantom size NxN by creating ImageGeometry, initialising the +# ImageData object with this geometry and empty array and finally put some +# data into its array, and display as image. +N = 128 +ig = ImageGeometry(voxel_num_x=N,voxel_num_y=N) +Phantom = ImageData(geometry=ig) + +x = Phantom.as_array() +x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 +x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 + +#plt.figure() +#plt.imshow(x) +#plt.title('Phantom image') +#plt.show() + +# Set up AcquisitionGeometry object to hold the parameters of the measurement +# setup geometry: # Number of angles, the actual angles from 0 to +# pi for parallel beam and 0 to 2pi for fanbeam, set the width of a detector +# pixel relative to an object pixel, the number of detector pixels, and the +# source-origin and origin-detector distance (here the origin-detector distance +# set to 0 to simulate a "virtual detector" with same detector pixel size as +# object pixel size). +angles_num = 20 +det_w = 1.0 +det_num = N +SourceOrig = 200 +OrigDetec = 0 + +if test_case==1: + angles = np.linspace(0,np.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('parallel', + '2D', + angles, + det_num,det_w) +elif test_case==2: + angles = np.linspace(0,2*np.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('cone', + '2D', + angles, + det_num, + det_w, + dist_source_center=SourceOrig, + dist_center_detector=OrigDetec) +else: + NotImplemented + +# Set up Operator object combining the ImageGeometry and AcquisitionGeometry +# wrapping calls to ASTRA as well as specifying whether to use CPU or GPU. +Aop = AstraProjectorSimple(ig, ag, 'cpu') + +# Forward and backprojection are available as methods direct and adjoint. Here +# generate test data b and do simple backprojection to obtain z. +b = Aop.direct(Phantom) +z = Aop.adjoint(b) + +#plt.figure() +#plt.imshow(b.array) +#plt.title('Simulated data') +#plt.show() + +#plt.figure() +#plt.imshow(z.array) +#plt.title('Backprojected data') +#plt.show() + +# Using the test data b, different reconstruction methods can now be set up as +# demonstrated in the rest of this file. In general all methods need an initial +# guess and some algorithm options to be set: +x_init = ImageData(np.zeros(x.shape),geometry=ig) +opt = {'tol': 1e-4, 'iter': 7} + +# First a CGLS reconstruction using the function version of CGLS can be done: +x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, b, opt) + +#plt.figure() +#plt.imshow(x_CGLS.array) +#plt.title('CGLS') +#plt.colorbar() +#plt.show() + +#plt.figure() +#plt.semilogy(criter_CGLS) +#plt.title('CGLS criterion') +#plt.show() + + + +# Now CLGS using the algorithm class +CGLS_alg = CGLSalg() +CGLS_alg.set_up(x_init, Aop, b ) +CGLS_alg.max_iteration = 2000 +CGLS_alg.run(opt['iter']) +x_CGLS_alg = CGLS_alg.get_output() + +#plt.figure() +#plt.imshow(x_CGLS_alg.as_array()) +#plt.title('CGLS ALG') +#plt.colorbar() +#plt.show() + +#plt.figure() +#plt.semilogy(CGLS_alg.objective) +#plt.title('CGLS criterion') +#plt.show() + +print(criter_CGLS) +print(CGLS_alg.objective) + +print((x_CGLS - x_CGLS_alg).norm())
\ No newline at end of file |