summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2019-06-20 16:30:11 +0100
committerEdoardo Pasca <edo.paskino@gmail.com>2019-06-20 16:30:11 +0100
commit79a39d8e85ffa69db7872816435eecda404f43ab (patch)
treeb876d8c3a81afdd7ad261ac61002751e0dfbc2f3 /Wrappers/Python
parent00b23c4250649b469672134268f47a9115931fd6 (diff)
downloadframework-79a39d8e85ffa69db7872816435eecda404f43ab.tar.gz
framework-79a39d8e85ffa69db7872816435eecda404f43ab.tar.bz2
framework-79a39d8e85ffa69db7872816435eecda404f43ab.tar.xz
framework-79a39d8e85ffa69db7872816435eecda404f43ab.zip
add random_noise to TestData
Diffstat (limited to 'Wrappers/Python')
-rwxr-xr-xWrappers/Python/ccpi/framework/TestData.py269
1 files changed, 221 insertions, 48 deletions
diff --git a/Wrappers/Python/ccpi/framework/TestData.py b/Wrappers/Python/ccpi/framework/TestData.py
index e7dc908..20931d7 100755
--- a/Wrappers/Python/ccpi/framework/TestData.py
+++ b/Wrappers/Python/ccpi/framework/TestData.py
@@ -69,53 +69,226 @@ class TestData(object):
print ("data.geometry", data.geometry)
return data
- def camera(**kwargs):
-
- tmp = Image.open(os.path.join(data_dir, 'camera.png'))
-
- size = kwargs.get('size',(512, 512))
-
- data = numpy.array(tmp.resize(size))
-
- data = data/data.max()
-
- return ImageData(data)
-
-
- def boat(**kwargs):
-
- tmp = Image.open(os.path.join(data_dir, 'boat.tiff'))
-
- size = kwargs.get('size',(512, 512))
-
- data = numpy.array(tmp.resize(size))
-
- data = data/data.max()
-
- return ImageData(data)
-
-
- def peppers(**kwargs):
-
- tmp = Image.open(os.path.join(data_dir, 'peppers.tiff'))
-
- size = kwargs.get('size',(512, 512))
-
- data = numpy.array(tmp.resize(size))
-
- data = data/data.max()
-
- return ImageData(data)
-
- def shapes(**kwargs):
-
- tmp = Image.open(os.path.join(data_dir, 'shapes.png')).convert('LA')
-
- size = kwargs.get('size',(300, 200))
+ @staticmethod
+ def random_noise(image, mode='gaussian', seed=None, clip=True, **kwargs):
+ if issubclass(type(image), DataContainer):
+ arr = scikit_random_noise(image, mode=mode, seed=seed, clip=clip,
+ **kwargs)
+ out = image.copy()
+ out.fill(arr)
+ return out
+ elif issubclass(type(image), numpy.ndarray):
+ return scikit_random_noise(image, mode=mode, seed=seed, clip=clip,
+ **kwargs)
+
+ @staticmethod
+ def scikit_random_noise(image, mode='gaussian', seed=None, clip=True, **kwargs):
+ """
+ Function to add random noise of various types to a floating-point image.
+ Parameters
+ ----------
+ image : ndarray
+ Input image data. Will be converted to float.
+ mode : str, optional
+ One of the following strings, selecting the type of noise to add:
+ - 'gaussian' Gaussian-distributed additive noise.
+ - 'localvar' Gaussian-distributed additive noise, with specified
+ local variance at each point of `image`.
+ - 'poisson' Poisson-distributed noise generated from the data.
+ - 'salt' Replaces random pixels with 1.
+ - 'pepper' Replaces random pixels with 0 (for unsigned images) or
+ -1 (for signed images).
+ - 's&p' Replaces random pixels with either 1 or `low_val`, where
+ `low_val` is 0 for unsigned images or -1 for signed
+ images.
+ - 'speckle' Multiplicative noise using out = image + n*image, where
+ n is uniform noise with specified mean & variance.
+ seed : int, optional
+ If provided, this will set the random seed before generating noise,
+ for valid pseudo-random comparisons.
+ clip : bool, optional
+ If True (default), the output will be clipped after noise applied
+ for modes `'speckle'`, `'poisson'`, and `'gaussian'`. This is
+ needed to maintain the proper image data range. If False, clipping
+ is not applied, and the output may extend beyond the range [-1, 1].
+ mean : float, optional
+ Mean of random distribution. Used in 'gaussian' and 'speckle'.
+ Default : 0.
+ var : float, optional
+ Variance of random distribution. Used in 'gaussian' and 'speckle'.
+ Note: variance = (standard deviation) ** 2. Default : 0.01
+ local_vars : ndarray, optional
+ Array of positive floats, same shape as `image`, defining the local
+ variance at every image point. Used in 'localvar'.
+ amount : float, optional
+ Proportion of image pixels to replace with noise on range [0, 1].
+ Used in 'salt', 'pepper', and 'salt & pepper'. Default : 0.05
+ salt_vs_pepper : float, optional
+ Proportion of salt vs. pepper noise for 's&p' on range [0, 1].
+ Higher values represent more salt. Default : 0.5 (equal amounts)
+ Returns
+ -------
+ out : ndarray
+ Output floating-point image data on range [0, 1] or [-1, 1] if the
+ input `image` was unsigned or signed, respectively.
+ Notes
+ -----
+ Speckle, Poisson, Localvar, and Gaussian noise may generate noise outside
+ the valid image range. The default is to clip (not alias) these values,
+ but they may be preserved by setting `clip=False`. Note that in this case
+ the output may contain values outside the ranges [0, 1] or [-1, 1].
+ Use this option with care.
+ Because of the prevalence of exclusively positive floating-point images in
+ intermediate calculations, it is not possible to intuit if an input is
+ signed based on dtype alone. Instead, negative values are explicitly
+ searched for. Only if found does this function assume signed input.
+ Unexpected results only occur in rare, poorly exposes cases (e.g. if all
+ values are above 50 percent gray in a signed `image`). In this event,
+ manually scaling the input to the positive domain will solve the problem.
+ The Poisson distribution is only defined for positive integers. To apply
+ this noise type, the number of unique values in the image is found and
+ the next round power of two is used to scale up the floating-point result,
+ after which it is scaled back down to the floating-point image range.
+ To generate Poisson noise against a signed image, the signed image is
+ temporarily converted to an unsigned image in the floating point domain,
+ Poisson noise is generated, then it is returned to the original range.
- data = numpy.array(tmp.resize(size))
-
- data = data/data.max()
+ This function is adapted from scikit-image.
+ https://github.com/scikit-image/scikit-image/blob/master/skimage/util/noise.py
+
+ Copyright (C) 2019, the scikit-image team
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ 1. Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+ 3. Neither the name of skimage nor the names of its contributors may be
+ used to endorse or promote products derived from this software without
+ specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
+ INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
+ IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
- return ImageData(data)
-
+ """
+ mode = mode.lower()
+
+ # Detect if a signed image was input
+ if image.min() < 0:
+ low_clip = -1.
+ else:
+ low_clip = 0.
+
+ image = numpy.asarray(image, dtype=(np.float64))
+ if seed is not None:
+ np.random.seed(seed=seed)
+
+ allowedtypes = {
+ 'gaussian': 'gaussian_values',
+ 'localvar': 'localvar_values',
+ 'poisson': 'poisson_values',
+ 'salt': 'sp_values',
+ 'pepper': 'sp_values',
+ 's&p': 's&p_values',
+ 'speckle': 'gaussian_values'}
+
+ kwdefaults = {
+ 'mean': 0.,
+ 'var': 0.01,
+ 'amount': 0.05,
+ 'salt_vs_pepper': 0.5,
+ 'local_vars': np.zeros_like(image) + 0.01}
+
+ allowedkwargs = {
+ 'gaussian_values': ['mean', 'var'],
+ 'localvar_values': ['local_vars'],
+ 'sp_values': ['amount'],
+ 's&p_values': ['amount', 'salt_vs_pepper'],
+ 'poisson_values': []}
+
+ for key in kwargs:
+ if key not in allowedkwargs[allowedtypes[mode]]:
+ raise ValueError('%s keyword not in allowed keywords %s' %
+ (key, allowedkwargs[allowedtypes[mode]]))
+
+ # Set kwarg defaults
+ for kw in allowedkwargs[allowedtypes[mode]]:
+ kwargs.setdefault(kw, kwdefaults[kw])
+
+ if mode == 'gaussian':
+ noise = np.random.normal(kwargs['mean'], kwargs['var'] ** 0.5,
+ image.shape)
+ out = image + noise
+
+ elif mode == 'localvar':
+ # Ensure local variance input is correct
+ if (kwargs['local_vars'] <= 0).any():
+ raise ValueError('All values of `local_vars` must be > 0.')
+
+ # Safe shortcut usage broadcasts kwargs['local_vars'] as a ufunc
+ out = image + np.random.normal(0, kwargs['local_vars'] ** 0.5)
+
+ elif mode == 'poisson':
+ # Determine unique values in image & calculate the next power of two
+ vals = len(np.unique(image))
+ vals = 2 ** np.ceil(np.log2(vals))
+
+ # Ensure image is exclusively positive
+ if low_clip == -1.:
+ old_max = image.max()
+ image = (image + 1.) / (old_max + 1.)
+
+ # Generating noise for each unique value in image.
+ out = np.random.poisson(image * vals) / float(vals)
+
+ # Return image to original range if input was signed
+ if low_clip == -1.:
+ out = out * (old_max + 1.) - 1.
+
+ elif mode == 'salt':
+ # Re-call function with mode='s&p' and p=1 (all salt noise)
+ out = random_noise(image, mode='s&p', seed=seed,
+ amount=kwargs['amount'], salt_vs_pepper=1.)
+
+ elif mode == 'pepper':
+ # Re-call function with mode='s&p' and p=1 (all pepper noise)
+ out = random_noise(image, mode='s&p', seed=seed,
+ amount=kwargs['amount'], salt_vs_pepper=0.)
+
+ elif mode == 's&p':
+ out = image.copy()
+ p = kwargs['amount']
+ q = kwargs['salt_vs_pepper']
+ flipped = np.random.choice([True, False], size=image.shape,
+ p=[p, 1 - p])
+ salted = np.random.choice([True, False], size=image.shape,
+ p=[q, 1 - q])
+ peppered = ~salted
+ out[flipped & salted] = 1
+ out[flipped & peppered] = low_clip
+
+ elif mode == 'speckle':
+ noise = np.random.normal(kwargs['mean'], kwargs['var'] ** 0.5,
+ image.shape)
+ out = image + image * noise
+
+ # Clip back to original range, if necessary
+ if clip:
+ out = np.clip(out, low_clip, 1.0)
+
+ return out \ No newline at end of file