diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2018-03-14 14:54:35 +0000 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2018-03-14 14:54:35 +0000 |
commit | 6eeb3f607eee57547182d24f2a7d4bce3fc47c24 (patch) | |
tree | 707dbbf0d65e6977c4bf3fc309894c48969a72a9 /Wrappers/Python | |
parent | 80e9ee7df105ded9aa3cf3f84032033f7fb2f1d4 (diff) | |
parent | 918ceb4031fcca0e62b1f8f61ff46924221ef75e (diff) | |
download | framework-6eeb3f607eee57547182d24f2a7d4bce3fc47c24.tar.gz framework-6eeb3f607eee57547182d24f2a7d4bce3fc47c24.tar.bz2 framework-6eeb3f607eee57547182d24f2a7d4bce3fc47c24.tar.xz framework-6eeb3f607eee57547182d24f2a7d4bce3fc47c24.zip |
Merge remote-tracking branch 'origin' into rename_as_ccppetmr
Diffstat (limited to 'Wrappers/Python')
-rw-r--r-- | Wrappers/Python/ccpi/framework.py | 167 | ||||
-rwxr-xr-x | Wrappers/Python/ccpi/processors.py | 939 | ||||
-rw-r--r-- | Wrappers/Python/ccpi/reconstruction/geoms.py | 107 | ||||
-rw-r--r-- | Wrappers/Python/wip/simple_demo.py | 13 | ||||
-rw-r--r-- | Wrappers/Python/wip/simple_demo_tv.py | 7 | ||||
-rwxr-xr-x | Wrappers/Python/wip/simple_mc_demo.py | 12 |
6 files changed, 592 insertions, 653 deletions
diff --git a/Wrappers/Python/ccpi/framework.py b/Wrappers/Python/ccpi/framework.py index 3409611..9b0cf54 100644 --- a/Wrappers/Python/ccpi/framework.py +++ b/Wrappers/Python/ccpi/framework.py @@ -23,7 +23,6 @@ import numpy import sys from datetime import timedelta, datetime import warnings -from ccpi.reconstruction import geoms if sys.version_info[0] >= 3 and sys.version_info[1] >= 4: ABC = abc.ABC @@ -34,65 +33,112 @@ def find_key(dic, val): """return the key of dictionary dic given the value""" return [k for k, v in dic.items() if v == val][0] -class CCPiBaseClass(ABC): - def __init__(self, **kwargs): - self.acceptedInputKeywords = [] - self.pars = {} - self.debug = True - # add keyworded arguments as accepted input keywords and add to the - # parameters - for key, value in kwargs.items(): - self.acceptedInputKeywords.append(key) - #print ("key {0}".format(key)) - #self.setParameter(key.__name__=value) - self.setParameter(**{key:value}) - - def setParameter(self, **kwargs): - '''set named parameter for the reconstructor engine - - raises Exception if the named parameter is not recognized - - ''' - for key , value in kwargs.items(): - if key in self.acceptedInputKeywords: - self.pars[key] = value - else: - raise KeyError('Wrong parameter "{0}" for {1}'.format(key, - self.__class__.__name__ )) - # setParameter - def getParameter(self, key): - if type(key) is str: - if key in self.acceptedInputKeywords: - return self.pars[key] - else: - raise KeyError('Unrecongnised parameter: {0} '.format(key) ) - elif type(key) is list: - outpars = [] - for k in key: - outpars.append(self.getParameter(k)) - return outpars +class ImageGeometry: + + def __init__(self, + voxel_num_x=0, + voxel_num_y=0, + voxel_num_z=0, + voxel_size_x=1, + voxel_size_y=1, + voxel_size_z=1, + center_x=0, + center_y=0, + center_z=0, + channels=1): + + self.voxel_num_x = voxel_num_x + self.voxel_num_y = voxel_num_y + self.voxel_num_z = voxel_num_z + self.voxel_size_x = voxel_size_x + self.voxel_size_y = voxel_size_y + self.voxel_size_z = voxel_size_z + self.center_x = center_x + self.center_y = center_y + self.center_z = center_z + self.channels = channels + + def getMinX(self): + return self.center_x - 0.5*self.voxel_num_x*self.voxel_size_x + + def getMaxX(self): + return self.center_x + 0.5*self.voxel_num_x*self.voxel_size_x + + def getMinY(self): + return self.center_y - 0.5*self.voxel_num_y*self.voxel_size_y + + def getMaxY(self): + return self.center_y + 0.5*self.voxel_num_y*self.voxel_size_y + + def getMinZ(self): + if not voxel_num_z == 0: + return self.center_z - 0.5*self.voxel_num_z*self.voxel_size_z else: - raise Exception('Unhandled input {0}' .format(str(type(key)))) - #getParameter - def getParameterMap(self, key): - if type(key) is str: - if key in self.acceptedInputKeywords: - return self.pars[key] - else: - raise KeyError('Unrecongnised parameter: {0} '.format(key) ) - elif type(key) is list: - outpars = {} - for k in key: - outpars[k] = self.getParameter(k) - return outpars + return 0 + + def getMaxZ(self): + if not voxel_num_z == 0: + return self.center_z + 0.5*self.voxel_num_z*self.voxel_size_z else: - raise Exception('Unhandled input {0}' .format(str(type(key)))) - #getParameter + return 0 + + +class AcquisitionGeometry: - def log(self, msg): - if self.debug: - print ("{0}: {1}".format(self.__class__.__name__, msg)) + def __init__(self, + geom_type, + dimension, + angles, + pixel_num_h=0, + pixel_size_h=1, + pixel_num_v=0, + pixel_size_v=1, + dist_source_center=None, + dist_center_detector=None, + channels=1 + ): + """ + General inputs for standard type projection geometries + detectorDomain or detectorpixelSize: + If 2D + If scalar: Width of detector or single detector pixel + If 2-vec: Error + If 3D + If scalar: Width in both dimensions + If 2-vec: Vertical then horizontal size + grid + If 2D + If scalar: number of detectors + If 2-vec: error + If 3D + If scalar: Square grid that size + If 2-vec vertical then horizontal size + cone or parallel + 2D or 3D + parallel_parameters: ? + cone_parameters: + source_to_center_dist (if parallel: NaN) + center_to_detector_dist (if parallel: NaN) + standard or nonstandard (vec) geometry + angles + angles_format radians or degrees + """ + self.geom_type = geom_type # 'parallel' or 'cone' + self.dimension = dimension # 2D or 3D + self.angles = angles + + self.dist_source_center = dist_source_center + self.dist_center_detector = dist_center_detector + + self.pixel_num_h = pixel_num_h + self.pixel_size_h = pixel_size_h + self.pixel_num_v = pixel_num_v + self.pixel_size_v = pixel_size_v + + self.channels = channels + + class DataContainer(object): '''Generic class to hold data @@ -896,11 +942,12 @@ if __name__ == '__main__': print ("shape b 2,3? {0}".format(numpy.shape(b1.as_array()))) - # create ImageData from geometry - vgeometry = geoms.VolumeGeometry(voxel_num_x=2, voxel_num_y=3, channels=2) - vol = ImageData(geometry=vgeometry) + + # create VolumeData from geometry + vgeometry = ImageGeometry(voxel_num_x=2, voxel_num_y=3, channels=2) + vol = VolumeData(geometry=vgeometry) - sgeometry = geoms.SinogramGeometry(dimension=2, angles=numpy.linspace(0, 180, num=20), + sgeometry = AcquisitionGeometry(dimension=2, angles=numpy.linspace(0, 180, num=20), geom_type='parallel', pixel_num_v=3, pixel_num_h=5 , channels=2) sino = AcquisitionData(geometry=sgeometry) diff --git a/Wrappers/Python/ccpi/processors.py b/Wrappers/Python/ccpi/processors.py index c509a4e..9138a27 100755 --- a/Wrappers/Python/ccpi/processors.py +++ b/Wrappers/Python/ccpi/processors.py @@ -1,471 +1,470 @@ -# -*- coding: utf-8 -*-
-# This work is part of the Core Imaging Library developed by
-# Visual Analytics and Imaging System Group of the Science Technology
-# Facilities Council, STFC
-
-# Copyright 2018 Edoardo Pasca
-
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-
-# http://www.apache.org/licenses/LICENSE-2.0
-
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License
-
-from ccpi.framework import DataSetProcessor, DataSet, VolumeData, SinogramData
-from ccpi.reconstruction import geoms
-import numpy
-import h5py
-from scipy import ndimage
-
-class Normalizer(DataSetProcessor):
- '''Normalization based on flat and dark
-
- This processor read in a SinogramDataSet and normalises it based on
- the instrument reading with and without incident photons or neutrons.
-
- Input: SinogramDataSet
- Parameter: 2D projection with flat field (or stack)
- 2D projection with dark field (or stack)
- Output: SinogramDataSetn
- '''
-
- def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5):
- kwargs = {
- 'flat_field' : None,
- 'dark_field' : None,
- # very small number. Used when there is a division by zero
- 'tolerance' : tolerance
- }
-
- #DataSetProcessor.__init__(self, **kwargs)
- super(Normalizer, self).__init__(**kwargs)
- if not flat_field is None:
- self.setFlatField(flat_field)
- if not dark_field is None:
- self.setDarkField(dark_field)
-
- def checkInput(self, dataset):
- if dataset.number_of_dimensions == 3:
- return True
- else:
- raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
- .format(dataset.number_of_dimensions))
-
- def setDarkField(self, df):
- if type(df) is numpy.ndarray:
- if len(numpy.shape(df)) == 3:
- raise ValueError('Dark Field should be 2D')
- elif len(numpy.shape(df)) == 2:
- self.dark_field = df
- elif issubclass(type(df), DataSet):
- self.dark_field = self.setDarkField(df.as_array())
-
- def setFlatField(self, df):
- if type(df) is numpy.ndarray:
- if len(numpy.shape(df)) == 3:
- raise ValueError('Flat Field should be 2D')
- elif len(numpy.shape(df)) == 2:
- self.flat_field = df
- elif issubclass(type(df), DataSet):
- self.flat_field = self.setDarkField(df.as_array())
-
- @staticmethod
- def normalizeProjection(projection, flat, dark, tolerance):
- a = (projection - dark)
- b = (flat-dark)
- with numpy.errstate(divide='ignore', invalid='ignore'):
- c = numpy.true_divide( a, b )
- c[ ~ numpy.isfinite( c )] = tolerance # set to not zero if 0/0
- return c
-
- def process(self):
-
- projections = self.getInput()
- dark = self.dark_field
- flat = self.flat_field
-
- if not (projections.shape[1:] == dark.shape and \
- projections.shape[1:] == flat.shape):
- raise ValueError('Flats/Dark and projections size do not match.')
-
-
- a = numpy.asarray(
- [ Normalizer.normalizeProjection(
- projection, flat, dark, self.tolerance) \
- for projection in projections.as_array() ]
- )
- y = type(projections)( a , True,
- dimension_labels=projections.dimension_labels,
- geometry=projections.geometry)
- return y
-
-
-class CenterOfRotationFinder(DataSetProcessor):
- '''Processor to find the center of rotation in a parallel beam experiment
-
- This processor read in a SinogramDataSet and finds the center of rotation
- based on Nghia Vo's method. https://doi.org/10.1364/OE.22.019078
-
- Input: SinogramDataSet
-
- Output: float. center of rotation in pixel coordinate
- '''
-
- def __init__(self):
- kwargs = {
-
- }
-
- #DataSetProcessor.__init__(self, **kwargs)
- super(CenterOfRotationFinder, self).__init__(**kwargs)
-
- def checkInput(self, dataset):
- if dataset.number_of_dimensions == 3:
- if dataset.geometry.geom_type == 'parallel':
- return True
- else:
- raise ValueError('This algorithm is suitable only for parallel beam geometry')
- else:
- raise ValueError("Expected input dimensions is 3, got {0}"\
- .format(dataset.number_of_dimensions))
-
-
- # #########################################################################
- # Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved. #
- # #
- # Copyright 2015. UChicago Argonne, LLC. This software was produced #
- # under U.S. Government contract DE-AC02-06CH11357 for Argonne National #
- # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the #
- # U.S. Department of Energy. The U.S. Government has rights to use, #
- # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR #
- # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR #
- # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is #
- # modified to produce derivative works, such modified software should #
- # be clearly marked, so as not to confuse it with the version available #
- # from ANL. #
- # #
- # Additionally, redistribution and use in source and binary forms, with #
- # or without modification, are permitted provided that the following #
- # conditions are met: #
- # #
- # * Redistributions of source code must retain the above copyright #
- # notice, this list of conditions and the following disclaimer. #
- # #
- # * Redistributions in binary form must reproduce the above copyright #
- # notice, this list of conditions and the following disclaimer in #
- # the documentation and/or other materials provided with the #
- # distribution. #
- # #
- # * Neither the name of UChicago Argonne, LLC, Argonne National #
- # Laboratory, ANL, the U.S. Government, nor the names of its #
- # contributors may be used to endorse or promote products derived #
- # from this software without specific prior written permission. #
- # #
- # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS #
- # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #
- # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS #
- # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago #
- # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, #
- # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, #
- # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; #
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #
- # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT #
- # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN #
- # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE #
- # POSSIBILITY OF SUCH DAMAGE. #
- # #########################################################################
-
- @staticmethod
- def as_ndarray(arr, dtype=None, copy=False):
- if not isinstance(arr, numpy.ndarray):
- arr = numpy.array(arr, dtype=dtype, copy=copy)
- return arr
-
- @staticmethod
- def as_dtype(arr, dtype, copy=False):
- if not arr.dtype == dtype:
- arr = numpy.array(arr, dtype=dtype, copy=copy)
- return arr
-
- @staticmethod
- def as_float32(arr):
- arr = CenterOfRotationFinder.as_ndarray(arr, numpy.float32)
- return CenterOfRotationFinder.as_dtype(arr, numpy.float32)
-
-
-
-
- @staticmethod
- def find_center_vo(tomo, ind=None, smin=-40, smax=40, srad=10, step=0.5,
- ratio=2., drop=20):
- """
- Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`.
-
- Parameters
- ----------
- tomo : ndarray
- 3D tomographic data.
- ind : int, optional
- Index of the slice to be used for reconstruction.
- smin, smax : int, optional
- Reference to the horizontal center of the sinogram.
- srad : float, optional
- Fine search radius.
- step : float, optional
- Step of fine searching.
- ratio : float, optional
- The ratio between the FOV of the camera and the size of object.
- It's used to generate the mask.
- drop : int, optional
- Drop lines around vertical center of the mask.
-
- Returns
- -------
- float
- Rotation axis location.
-
- Notes
- -----
- The function may not yield a correct estimate, if:
-
- - the sample size is bigger than the field of view of the camera.
- In this case the ``ratio`` argument need to be set larger
- than the default of 2.0.
-
- - there is distortion in the imaging hardware. If there's
- no correction applied, the center of the projection image may
- yield a better estimate.
-
- - the sample contrast is weak. Paganin's filter need to be applied
- to overcome this.
-
- - the sample was changed during the scan.
- """
- tomo = CenterOfRotationFinder.as_float32(tomo)
-
- if ind is None:
- ind = tomo.shape[1] // 2
- _tomo = tomo[:, ind, :]
-
-
-
- # Reduce noise by smooth filters. Use different filters for coarse and fine search
- _tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1))
- _tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2))
-
- # Coarse and fine searches for finding the rotation center.
- if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k)
- #_tomo_coarse = downsample(numpy.expand_dims(_tomo_cs,1), level=2)[:, 0, :]
- #init_cen = _search_coarse(_tomo_coarse, smin, smax, ratio, drop)
- #fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop)
- init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, smin,
- smax, ratio, drop)
- fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
- step, init_cen,
- ratio, drop)
- else:
- init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs,
- smin, smax,
- ratio, drop)
- fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
- step, init_cen,
- ratio, drop)
-
- #logger.debug('Rotation center search finished: %i', fine_cen)
- return fine_cen
-
-
- @staticmethod
- def _search_coarse(sino, smin, smax, ratio, drop):
- """
- Coarse search for finding the rotation center.
- """
- (Nrow, Ncol) = sino.shape
- centerfliplr = (Ncol - 1.0) / 2.0
-
- # Copy the sinogram and flip left right, the purpose is to
- # make a full [0;2Pi] sinogram
- _copy_sino = numpy.fliplr(sino[1:])
-
- # This image is used for compensating the shift of sinogram 2
- temp_img = numpy.zeros((Nrow - 1, Ncol), dtype='float32')
- temp_img[:] = sino[-1]
-
- # Start coarse search in which the shift step is 1
- listshift = numpy.arange(smin, smax + 1)
- listmetric = numpy.zeros(len(listshift), dtype='float32')
- mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol,
- 0.5 * ratio * Ncol, drop)
- for i in listshift:
- _sino = numpy.roll(_copy_sino, i, axis=1)
- if i >= 0:
- _sino[:, 0:i] = temp_img[:, 0:i]
- else:
- _sino[:, i:] = temp_img[:, i:]
- listmetric[i - smin] = numpy.sum(numpy.abs(numpy.fft.fftshift(
- #pyfftw.interfaces.numpy_fft.fft2(
- # numpy.vstack((sino, _sino)))
- numpy.fft.fft2(numpy.vstack((sino, _sino)))
- )) * mask)
- minpos = numpy.argmin(listmetric)
- return centerfliplr + listshift[minpos] / 2.0
-
- @staticmethod
- def _search_fine(sino, srad, step, init_cen, ratio, drop):
- """
- Fine search for finding the rotation center.
- """
- Nrow, Ncol = sino.shape
- centerfliplr = (Ncol + 1.0) / 2.0 - 1.0
- # Use to shift the sinogram 2 to the raw CoR.
- shiftsino = numpy.int16(2 * (init_cen - centerfliplr))
- _copy_sino = numpy.roll(numpy.fliplr(sino[1:]), shiftsino, axis=1)
- if init_cen <= centerfliplr:
- lefttake = numpy.int16(numpy.ceil(srad + 1))
- righttake = numpy.int16(numpy.floor(2 * init_cen - srad - 1))
- else:
- lefttake = numpy.int16(numpy.ceil(
- init_cen - (Ncol - 1 - init_cen) + srad + 1))
- righttake = numpy.int16(numpy.floor(Ncol - 1 - srad - 1))
- Ncol1 = righttake - lefttake + 1
- mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol1,
- 0.5 * ratio * Ncol, drop)
- numshift = numpy.int16((2 * srad) / step) + 1
- listshift = numpy.linspace(-srad, srad, num=numshift)
- listmetric = numpy.zeros(len(listshift), dtype='float32')
- factor1 = numpy.mean(sino[-1, lefttake:righttake])
- num1 = 0
- for i in listshift:
- _sino = ndimage.interpolation.shift(
- _copy_sino, (0, i), prefilter=False)
- factor2 = numpy.mean(_sino[0,lefttake:righttake])
- _sino = _sino * factor1 / factor2
- sinojoin = numpy.vstack((sino, _sino))
- listmetric[num1] = numpy.sum(numpy.abs(numpy.fft.fftshift(
- #pyfftw.interfaces.numpy_fft.fft2(
- # sinojoin[:, lefttake:righttake + 1])
- numpy.fft.fft2(sinojoin[:, lefttake:righttake + 1])
- )) * mask)
- num1 = num1 + 1
- minpos = numpy.argmin(listmetric)
- return init_cen + listshift[minpos] / 2.0
-
- @staticmethod
- def _create_mask(nrow, ncol, radius, drop):
- du = 1.0 / ncol
- dv = (nrow - 1.0) / (nrow * 2.0 * numpy.pi)
- centerrow = numpy.ceil(nrow / 2) - 1
- centercol = numpy.ceil(ncol / 2) - 1
- # added by Edoardo Pasca
- centerrow = int(centerrow)
- centercol = int(centercol)
- mask = numpy.zeros((nrow, ncol), dtype='float32')
- for i in range(nrow):
- num1 = numpy.round(((i - centerrow) * dv / radius) / du)
- (p1, p2) = numpy.int16(numpy.clip(numpy.sort(
- (-num1 + centercol, num1 + centercol)), 0, ncol - 1))
- mask[i, p1:p2 + 1] = numpy.ones(p2 - p1 + 1, dtype='float32')
- if drop < centerrow:
- mask[centerrow - drop:centerrow + drop + 1,
- :] = numpy.zeros((2 * drop + 1, ncol), dtype='float32')
- mask[:,centercol-1:centercol+2] = numpy.zeros((nrow, 3), dtype='float32')
- return mask
-
- def process(self):
-
- projections = self.getInput()
-
- cor = CenterOfRotationFinder.find_center_vo(projections.as_array())
-
- return cor
-
-def loadNexus(filename):
- '''Load a dataset stored in a NeXuS file (HDF5)'''
- ###########################################################################
- ## Load a dataset
- nx = h5py.File(filename, "r")
-
- data = nx.get('entry1/tomo_entry/data/rotation_angle')
- angles = numpy.zeros(data.shape)
- data.read_direct(angles)
-
- data = nx.get('entry1/tomo_entry/data/data')
- stack = numpy.zeros(data.shape)
- data.read_direct(stack)
- data = nx.get('entry1/tomo_entry/instrument/detector/image_key')
-
- itype = numpy.zeros(data.shape)
- data.read_direct(itype)
- # 2 is dark field
- darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ]
- dark = darks[0]
- for i in range(1, len(darks)):
- dark += darks[i]
- dark = dark / len(darks)
- #dark[0][0] = dark[0][1]
-
- # 1 is flat field
- flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ]
- flat = flats[0]
- for i in range(1, len(flats)):
- flat += flats[i]
- flat = flat / len(flats)
- #flat[0][0] = dark[0][1]
-
-
- # 0 is projection data
- proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ]
- angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ]
- angle_proj = numpy.asarray (angle_proj)
- angle_proj = angle_proj.astype(numpy.float32)
-
- return angle_proj , numpy.asarray(proj) , dark, flat
-
-
-
-if __name__ == '__main__':
- angles, proj, dark, flat = loadNexus('../../../data/24737_fd.nxs')
-
- parallelbeam = geoms.SinogramGeometry('parallel', '3D' ,
- angles=angles,
- pixel_num_h=numpy.shape(proj)[2],
- pixel_num_v=numpy.shape(proj)[1],
- )
- sino = SinogramData( proj , geometry=parallelbeam)
-
- normalizer = Normalizer()
- normalizer.setInput(sino)
- normalizer.setFlatField(flat)
- normalizer.setDarkField(dark)
- norm = normalizer.getOutput()
- print ("Processor min {0} max {1}".format(norm.as_array().min(), norm.as_array().max()))
-
- norm1 = numpy.asarray(
- [Normalizer.normalizeProjection( p, flat, dark, 1e-5 )
- for p in proj]
- )
-
- print ("Numpy min {0} max {1}".format(norm1.min(), norm1.max()))
-
- cor_finder = CenterOfRotationFinder()
- cor_finder.setInput(sino)
- cor = cor_finder.getOutput()
- print ("center of rotation {0} == 86.25?".format(cor))
-
- conebeam = geoms.SinogramGeometry('cone', '3D' ,
- angles=angles,
- pixel_num_h=numpy.shape(proj)[2],
- pixel_num_v=numpy.shape(proj)[1],
- )
- sino = SinogramData( proj , geometry=conebeam)
- try:
- cor_finder.setInput(sino)
- cor = cor_finder.getOutput()
- except ValueError as err:
+# -*- coding: utf-8 -*- +# This work is part of the Core Imaging Library developed by +# Visual Analytics and Imaging System Group of the Science Technology +# Facilities Council, STFC + +# Copyright 2018 Edoardo Pasca + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License + +from ccpi.framework import DataSetProcessor, DataSet, VolumeData, SinogramData, ImageGeometry, AcquisitionGeometry +import numpy +import h5py +from scipy import ndimage + +class Normalizer(DataSetProcessor): + '''Normalization based on flat and dark + + This processor read in a SinogramDataSet and normalises it based on + the instrument reading with and without incident photons or neutrons. + + Input: SinogramDataSet + Parameter: 2D projection with flat field (or stack) + 2D projection with dark field (or stack) + Output: SinogramDataSetn + ''' + + def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5): + kwargs = { + 'flat_field' : None, + 'dark_field' : None, + # very small number. Used when there is a division by zero + 'tolerance' : tolerance + } + + #DataSetProcessor.__init__(self, **kwargs) + super(Normalizer, self).__init__(**kwargs) + if not flat_field is None: + self.setFlatField(flat_field) + if not dark_field is None: + self.setDarkField(dark_field) + + def checkInput(self, dataset): + if dataset.number_of_dimensions == 3: + return True + else: + raise ValueError("Expected input dimensions is 2 or 3, got {0}"\ + .format(dataset.number_of_dimensions)) + + def setDarkField(self, df): + if type(df) is numpy.ndarray: + if len(numpy.shape(df)) == 3: + raise ValueError('Dark Field should be 2D') + elif len(numpy.shape(df)) == 2: + self.dark_field = df + elif issubclass(type(df), DataSet): + self.dark_field = self.setDarkField(df.as_array()) + + def setFlatField(self, df): + if type(df) is numpy.ndarray: + if len(numpy.shape(df)) == 3: + raise ValueError('Flat Field should be 2D') + elif len(numpy.shape(df)) == 2: + self.flat_field = df + elif issubclass(type(df), DataSet): + self.flat_field = self.setDarkField(df.as_array()) + + @staticmethod + def normalizeProjection(projection, flat, dark, tolerance): + a = (projection - dark) + b = (flat-dark) + with numpy.errstate(divide='ignore', invalid='ignore'): + c = numpy.true_divide( a, b ) + c[ ~ numpy.isfinite( c )] = tolerance # set to not zero if 0/0 + return c + + def process(self): + + projections = self.getInput() + dark = self.dark_field + flat = self.flat_field + + if not (projections.shape[1:] == dark.shape and \ + projections.shape[1:] == flat.shape): + raise ValueError('Flats/Dark and projections size do not match.') + + + a = numpy.asarray( + [ Normalizer.normalizeProjection( + projection, flat, dark, self.tolerance) \ + for projection in projections.as_array() ] + ) + y = type(projections)( a , True, + dimension_labels=projections.dimension_labels, + geometry=projections.geometry) + return y + + +class CenterOfRotationFinder(DataSetProcessor): + '''Processor to find the center of rotation in a parallel beam experiment + + This processor read in a SinogramDataSet and finds the center of rotation + based on Nghia Vo's method. https://doi.org/10.1364/OE.22.019078 + + Input: SinogramDataSet + + Output: float. center of rotation in pixel coordinate + ''' + + def __init__(self): + kwargs = { + + } + + #DataSetProcessor.__init__(self, **kwargs) + super(CenterOfRotationFinder, self).__init__(**kwargs) + + def checkInput(self, dataset): + if dataset.number_of_dimensions == 3: + if dataset.geometry.geom_type == 'parallel': + return True + else: + raise ValueError('This algorithm is suitable only for parallel beam geometry') + else: + raise ValueError("Expected input dimensions is 3, got {0}"\ + .format(dataset.number_of_dimensions)) + + + # ######################################################################### + # Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved. # + # # + # Copyright 2015. UChicago Argonne, LLC. This software was produced # + # under U.S. Government contract DE-AC02-06CH11357 for Argonne National # + # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the # + # U.S. Department of Energy. The U.S. Government has rights to use, # + # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR # + # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR # + # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is # + # modified to produce derivative works, such modified software should # + # be clearly marked, so as not to confuse it with the version available # + # from ANL. # + # # + # Additionally, redistribution and use in source and binary forms, with # + # or without modification, are permitted provided that the following # + # conditions are met: # + # # + # * Redistributions of source code must retain the above copyright # + # notice, this list of conditions and the following disclaimer. # + # # + # * Redistributions in binary form must reproduce the above copyright # + # notice, this list of conditions and the following disclaimer in # + # the documentation and/or other materials provided with the # + # distribution. # + # # + # * Neither the name of UChicago Argonne, LLC, Argonne National # + # Laboratory, ANL, the U.S. Government, nor the names of its # + # contributors may be used to endorse or promote products derived # + # from this software without specific prior written permission. # + # # + # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS # + # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # + # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # + # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago # + # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # + # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # + # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # + # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # + # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # + # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # + # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # + # POSSIBILITY OF SUCH DAMAGE. # + # ######################################################################### + + @staticmethod + def as_ndarray(arr, dtype=None, copy=False): + if not isinstance(arr, numpy.ndarray): + arr = numpy.array(arr, dtype=dtype, copy=copy) + return arr + + @staticmethod + def as_dtype(arr, dtype, copy=False): + if not arr.dtype == dtype: + arr = numpy.array(arr, dtype=dtype, copy=copy) + return arr + + @staticmethod + def as_float32(arr): + arr = CenterOfRotationFinder.as_ndarray(arr, numpy.float32) + return CenterOfRotationFinder.as_dtype(arr, numpy.float32) + + + + + @staticmethod + def find_center_vo(tomo, ind=None, smin=-40, smax=40, srad=10, step=0.5, + ratio=2., drop=20): + """ + Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`. + + Parameters + ---------- + tomo : ndarray + 3D tomographic data. + ind : int, optional + Index of the slice to be used for reconstruction. + smin, smax : int, optional + Reference to the horizontal center of the sinogram. + srad : float, optional + Fine search radius. + step : float, optional + Step of fine searching. + ratio : float, optional + The ratio between the FOV of the camera and the size of object. + It's used to generate the mask. + drop : int, optional + Drop lines around vertical center of the mask. + + Returns + ------- + float + Rotation axis location. + + Notes + ----- + The function may not yield a correct estimate, if: + + - the sample size is bigger than the field of view of the camera. + In this case the ``ratio`` argument need to be set larger + than the default of 2.0. + + - there is distortion in the imaging hardware. If there's + no correction applied, the center of the projection image may + yield a better estimate. + + - the sample contrast is weak. Paganin's filter need to be applied + to overcome this. + + - the sample was changed during the scan. + """ + tomo = CenterOfRotationFinder.as_float32(tomo) + + if ind is None: + ind = tomo.shape[1] // 2 + _tomo = tomo[:, ind, :] + + + + # Reduce noise by smooth filters. Use different filters for coarse and fine search + _tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1)) + _tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2)) + + # Coarse and fine searches for finding the rotation center. + if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k) + #_tomo_coarse = downsample(numpy.expand_dims(_tomo_cs,1), level=2)[:, 0, :] + #init_cen = _search_coarse(_tomo_coarse, smin, smax, ratio, drop) + #fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop) + init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, smin, + smax, ratio, drop) + fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad, + step, init_cen, + ratio, drop) + else: + init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, + smin, smax, + ratio, drop) + fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad, + step, init_cen, + ratio, drop) + + #logger.debug('Rotation center search finished: %i', fine_cen) + return fine_cen + + + @staticmethod + def _search_coarse(sino, smin, smax, ratio, drop): + """ + Coarse search for finding the rotation center. + """ + (Nrow, Ncol) = sino.shape + centerfliplr = (Ncol - 1.0) / 2.0 + + # Copy the sinogram and flip left right, the purpose is to + # make a full [0;2Pi] sinogram + _copy_sino = numpy.fliplr(sino[1:]) + + # This image is used for compensating the shift of sinogram 2 + temp_img = numpy.zeros((Nrow - 1, Ncol), dtype='float32') + temp_img[:] = sino[-1] + + # Start coarse search in which the shift step is 1 + listshift = numpy.arange(smin, smax + 1) + listmetric = numpy.zeros(len(listshift), dtype='float32') + mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol, + 0.5 * ratio * Ncol, drop) + for i in listshift: + _sino = numpy.roll(_copy_sino, i, axis=1) + if i >= 0: + _sino[:, 0:i] = temp_img[:, 0:i] + else: + _sino[:, i:] = temp_img[:, i:] + listmetric[i - smin] = numpy.sum(numpy.abs(numpy.fft.fftshift( + #pyfftw.interfaces.numpy_fft.fft2( + # numpy.vstack((sino, _sino))) + numpy.fft.fft2(numpy.vstack((sino, _sino))) + )) * mask) + minpos = numpy.argmin(listmetric) + return centerfliplr + listshift[minpos] / 2.0 + + @staticmethod + def _search_fine(sino, srad, step, init_cen, ratio, drop): + """ + Fine search for finding the rotation center. + """ + Nrow, Ncol = sino.shape + centerfliplr = (Ncol + 1.0) / 2.0 - 1.0 + # Use to shift the sinogram 2 to the raw CoR. + shiftsino = numpy.int16(2 * (init_cen - centerfliplr)) + _copy_sino = numpy.roll(numpy.fliplr(sino[1:]), shiftsino, axis=1) + if init_cen <= centerfliplr: + lefttake = numpy.int16(numpy.ceil(srad + 1)) + righttake = numpy.int16(numpy.floor(2 * init_cen - srad - 1)) + else: + lefttake = numpy.int16(numpy.ceil( + init_cen - (Ncol - 1 - init_cen) + srad + 1)) + righttake = numpy.int16(numpy.floor(Ncol - 1 - srad - 1)) + Ncol1 = righttake - lefttake + 1 + mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol1, + 0.5 * ratio * Ncol, drop) + numshift = numpy.int16((2 * srad) / step) + 1 + listshift = numpy.linspace(-srad, srad, num=numshift) + listmetric = numpy.zeros(len(listshift), dtype='float32') + factor1 = numpy.mean(sino[-1, lefttake:righttake]) + num1 = 0 + for i in listshift: + _sino = ndimage.interpolation.shift( + _copy_sino, (0, i), prefilter=False) + factor2 = numpy.mean(_sino[0,lefttake:righttake]) + _sino = _sino * factor1 / factor2 + sinojoin = numpy.vstack((sino, _sino)) + listmetric[num1] = numpy.sum(numpy.abs(numpy.fft.fftshift( + #pyfftw.interfaces.numpy_fft.fft2( + # sinojoin[:, lefttake:righttake + 1]) + numpy.fft.fft2(sinojoin[:, lefttake:righttake + 1]) + )) * mask) + num1 = num1 + 1 + minpos = numpy.argmin(listmetric) + return init_cen + listshift[minpos] / 2.0 + + @staticmethod + def _create_mask(nrow, ncol, radius, drop): + du = 1.0 / ncol + dv = (nrow - 1.0) / (nrow * 2.0 * numpy.pi) + centerrow = numpy.ceil(nrow / 2) - 1 + centercol = numpy.ceil(ncol / 2) - 1 + # added by Edoardo Pasca + centerrow = int(centerrow) + centercol = int(centercol) + mask = numpy.zeros((nrow, ncol), dtype='float32') + for i in range(nrow): + num1 = numpy.round(((i - centerrow) * dv / radius) / du) + (p1, p2) = numpy.int16(numpy.clip(numpy.sort( + (-num1 + centercol, num1 + centercol)), 0, ncol - 1)) + mask[i, p1:p2 + 1] = numpy.ones(p2 - p1 + 1, dtype='float32') + if drop < centerrow: + mask[centerrow - drop:centerrow + drop + 1, + :] = numpy.zeros((2 * drop + 1, ncol), dtype='float32') + mask[:,centercol-1:centercol+2] = numpy.zeros((nrow, 3), dtype='float32') + return mask + + def process(self): + + projections = self.getInput() + + cor = CenterOfRotationFinder.find_center_vo(projections.as_array()) + + return cor + +def loadNexus(filename): + '''Load a dataset stored in a NeXuS file (HDF5)''' + ########################################################################### + ## Load a dataset + nx = h5py.File(filename, "r") + + data = nx.get('entry1/tomo_entry/data/rotation_angle') + angles = numpy.zeros(data.shape) + data.read_direct(angles) + + data = nx.get('entry1/tomo_entry/data/data') + stack = numpy.zeros(data.shape) + data.read_direct(stack) + data = nx.get('entry1/tomo_entry/instrument/detector/image_key') + + itype = numpy.zeros(data.shape) + data.read_direct(itype) + # 2 is dark field + darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ] + dark = darks[0] + for i in range(1, len(darks)): + dark += darks[i] + dark = dark / len(darks) + #dark[0][0] = dark[0][1] + + # 1 is flat field + flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ] + flat = flats[0] + for i in range(1, len(flats)): + flat += flats[i] + flat = flat / len(flats) + #flat[0][0] = dark[0][1] + + + # 0 is projection data + proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ] + angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ] + angle_proj = numpy.asarray (angle_proj) + angle_proj = angle_proj.astype(numpy.float32) + + return angle_proj , numpy.asarray(proj) , dark, flat + + + +if __name__ == '__main__': + angles, proj, dark, flat = loadNexus('../../../data/24737_fd.nxs') + + parallelbeam = AcquisitionGeometry('parallel', '3D' , + angles=angles, + pixel_num_h=numpy.shape(proj)[2], + pixel_num_v=numpy.shape(proj)[1], + ) + sino = SinogramData( proj , geometry=parallelbeam) + + normalizer = Normalizer() + normalizer.setInput(sino) + normalizer.setFlatField(flat) + normalizer.setDarkField(dark) + norm = normalizer.getOutput() + print ("Processor min {0} max {1}".format(norm.as_array().min(), norm.as_array().max())) + + norm1 = numpy.asarray( + [Normalizer.normalizeProjection( p, flat, dark, 1e-5 ) + for p in proj] + ) + + print ("Numpy min {0} max {1}".format(norm1.min(), norm1.max())) + + cor_finder = CenterOfRotationFinder() + cor_finder.setInput(sino) + cor = cor_finder.getOutput() + print ("center of rotation {0} == 86.25?".format(cor)) + + conebeam = AcquisitionGeometry('cone', '3D' , + angles=angles, + pixel_num_h=numpy.shape(proj)[2], + pixel_num_v=numpy.shape(proj)[1], + ) + sino = SinogramData( proj , geometry=conebeam) + try: + cor_finder.setInput(sino) + cor = cor_finder.getOutput() + except ValueError as err: print (err)
\ No newline at end of file diff --git a/Wrappers/Python/ccpi/reconstruction/geoms.py b/Wrappers/Python/ccpi/reconstruction/geoms.py deleted file mode 100644 index a887c0c..0000000 --- a/Wrappers/Python/ccpi/reconstruction/geoms.py +++ /dev/null @@ -1,107 +0,0 @@ - -class VolumeGeometry: - - def __init__(self, - voxel_num_x=0, - voxel_num_y=0, - voxel_num_z=0, - voxel_size_x=1, - voxel_size_y=1, - voxel_size_z=1, - center_x=0, - center_y=0, - center_z=0, - channels=1): - - self.voxel_num_x = voxel_num_x - self.voxel_num_y = voxel_num_y - self.voxel_num_z = voxel_num_z - self.voxel_size_x = voxel_size_x - self.voxel_size_y = voxel_size_y - self.voxel_size_z = voxel_size_z - self.center_x = center_x - self.center_y = center_y - self.center_z = center_z - self.channels = channels - - def getMinX(self): - return self.center_x - 0.5*self.voxel_num_x*self.voxel_size_x - - def getMaxX(self): - return self.center_x + 0.5*self.voxel_num_x*self.voxel_size_x - - def getMinY(self): - return self.center_y - 0.5*self.voxel_num_y*self.voxel_size_y - - def getMaxY(self): - return self.center_y + 0.5*self.voxel_num_y*self.voxel_size_y - - def getMinZ(self): - if not voxel_num_z == 0: - return self.center_z - 0.5*self.voxel_num_z*self.voxel_size_z - else: - return 0 - - def getMaxZ(self): - if not voxel_num_z == 0: - return self.center_z + 0.5*self.voxel_num_z*self.voxel_size_z - else: - return 0 - - -class SinogramGeometry: - - def __init__(self, - geom_type, - dimension, - angles, - pixel_num_h=0, - pixel_size_h=1, - pixel_num_v=0, - pixel_size_v=1, - dist_source_center=None, - dist_center_detector=None, - channels=1 - ): - """ - General inputs for standard type projection geometries - detectorDomain or detectorpixelSize: - If 2D - If scalar: Width of detector or single detector pixel - If 2-vec: Error - If 3D - If scalar: Width in both dimensions - If 2-vec: Vertical then horizontal size - grid - If 2D - If scalar: number of detectors - If 2-vec: error - If 3D - If scalar: Square grid that size - If 2-vec vertical then horizontal size - cone or parallel - 2D or 3D - parallel_parameters: ? - cone_parameters: - source_to_center_dist (if parallel: NaN) - center_to_detector_dist (if parallel: NaN) - standard or nonstandard (vec) geometry - angles - angles_format radians or degrees - """ - self.geom_type = geom_type # 'parallel' or 'cone' - self.dimension = dimension # 2D or 3D - self.angles = angles - - self.dist_source_center = dist_source_center - self.dist_center_detector = dist_center_detector - - self.pixel_num_h = pixel_num_h - self.pixel_size_h = pixel_size_h - self.pixel_num_v = pixel_num_v - self.pixel_size_v = pixel_size_v - - self.channels = channels - - - diff --git a/Wrappers/Python/wip/simple_demo.py b/Wrappers/Python/wip/simple_demo.py index 99109a6..629d9b5 100644 --- a/Wrappers/Python/wip/simple_demo.py +++ b/Wrappers/Python/wip/simple_demo.py @@ -1,11 +1,11 @@ #import sys #sys.path.append("..") -from ccpi.framework import ImageData +from ccpi.framework import ImageData , VolumeGeometry, SinogramGeometry from ccpi.reconstruction.algs import FISTA, FBPD, CGLS from ccpi.reconstruction.funcs import Norm2sq, Norm1 from ccpi.astra.astra_ops import AstraProjectorSimple -from ccpi.reconstruction.geoms import VolumeGeometry, SinogramGeometry +from ccpi.reconstruction.geoms import import numpy as np import matplotlib.pyplot as plt @@ -15,8 +15,9 @@ test_case = 1 # 1=parallel2D, 2=cone2D # Set up phantom N = 128 -vg = VolumeGeometry(voxel_num_x=N,voxel_num_y=N) -Phantom = ImageData(geometry=vg) + +vg = ImageGeometry(voxel_num_x=N,voxel_num_y=N) +Phantom = VolumeData(geometry=vg) x = Phantom.as_array() x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 1.0 @@ -42,12 +43,12 @@ OrigDetec = 0 # Parallelbeam geometry test if test_case==1: - pg = SinogramGeometry('parallel', + pg = AcquisitionGeometry('parallel', '2D', angles, det_num,det_w) elif test_case==2: - pg = SinogramGeometry('cone', + pg = AcquisitionGeometry('cone', '2D', angles, det_num, diff --git a/Wrappers/Python/wip/simple_demo_tv.py b/Wrappers/Python/wip/simple_demo_tv.py index 0ae550a..29e2349 100644 --- a/Wrappers/Python/wip/simple_demo_tv.py +++ b/Wrappers/Python/wip/simple_demo_tv.py @@ -9,7 +9,6 @@ from ccpi.reconstruction.algs import * from ccpi.reconstruction.funcs import * from ccpi.reconstruction.ops import * from ccpi.reconstruction.astra_ops import * -from ccpi.reconstruction.geoms import * import numpy as np import matplotlib.pyplot as plt @@ -26,7 +25,7 @@ x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 2.0 plt.imshow(x) plt.show() -vg = VolumeGeometry(N,N,None, 1,1,None) +vg = ImageGeometry(N,N,None, 1,1,None) Phantom = VolumeData(x,geometry=vg) @@ -47,12 +46,12 @@ OrigDetec = 0 # Parallelbeam geometry test if test_case==1: - pg = SinogramGeometry('parallel', + pg = AcquisitionGeometry('parallel', '2D', angles, det_num,det_w) elif test_case==2: - pg = SinogramGeometry('cone', + pg = AcquisitionGeometry('cone', '2D', angles, det_num, diff --git a/Wrappers/Python/wip/simple_mc_demo.py b/Wrappers/Python/wip/simple_mc_demo.py index 0bd48dd..bb74c09 100755 --- a/Wrappers/Python/wip/simple_mc_demo.py +++ b/Wrappers/Python/wip/simple_mc_demo.py @@ -1,7 +1,7 @@ #import sys #sys.path.append("..") -from ccpi.framework import ImageData, AcquisitionData +from ccpi.framework import ImageData, AcquisitionData, ImageGeometry, AcquisitionGeometry from ccpi.reconstruction.algs import FISTA from ccpi.reconstruction.funcs import Norm2sq, Norm1 from ccpi.astra.astra_ops import AstraProjectorMC @@ -17,8 +17,8 @@ N = 128 M = 100 numchannels = 3 -vg = VolumeGeometry(voxel_num_x=N,voxel_num_y=N,channels=numchannels) -Phantom = ImageData(geometry=vg) +vg = ImageGeometry(voxel_num_x=N,voxel_num_y=N,channels=numchannels) +Phantom = VolumeData(geometry=vg) x = Phantom.as_array() x[0 , round(N/4):round(3*N/4) , round(N/4):round(3*N/4) ] = 1.0 @@ -46,7 +46,7 @@ for k in numpy.arange(3): axarr[k].imshow(x[k],vmin=0,vmax=2.5) plt.show() -#vg = VolumeGeometry(N,N,None, 1,1,None,channels=numchannels) +#vg = ImageGeometry(N,N,None, 1,1,None,channels=numchannels) #Phantom = ImageData(x,geometry=vg) @@ -68,14 +68,14 @@ OrigDetec = 0 # Parallelbeam geometry test if test_case==1: - pg = SinogramGeometry('parallel', + pg = AcquisitionGeometry('parallel', '2D', angles, det_num, det_w, channels=numchannels) elif test_case==2: - pg = SinogramGeometry('cone', + pg = AcquisitionGeometry('cone', '2D', angles, det_num, |