diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2019-05-03 14:10:51 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-05-03 14:10:51 +0100 |
commit | 3441b56e1ba887c71e54eaea7a0a71e44c58c5b1 (patch) | |
tree | b8b572bee346799e313c8dd8e084fa54a327fa3f /Wrappers/Python | |
parent | 376e12c567f045169119f87f82efc196570753ad (diff) | |
parent | 82d94d608ea639c0aa8aefb80cc97c5d8b1ba2cb (diff) | |
download | framework-3441b56e1ba887c71e54eaea7a0a71e44c58c5b1.tar.gz framework-3441b56e1ba887c71e54eaea7a0a71e44c58c5b1.tar.bz2 framework-3441b56e1ba887c71e54eaea7a0a71e44c58c5b1.tar.xz framework-3441b56e1ba887c71e54eaea7a0a71e44c58c5b1.zip |
Merge pull request #273 from vais-ral/cgls_bug_beast
Fix dot product bug to fix new CGLS algorithm
closes #239
Diffstat (limited to 'Wrappers/Python')
-rwxr-xr-x | Wrappers/Python/ccpi/framework/framework.py | 20 | ||||
-rwxr-xr-x | Wrappers/Python/ccpi/optimisation/algs.py | 9 | ||||
-rwxr-xr-x | Wrappers/Python/test/test_DataContainer.py | 5 | ||||
-rw-r--r-- | Wrappers/Python/wip/compare_CGLS_algos.py | 127 |
4 files changed, 151 insertions, 10 deletions
diff --git a/Wrappers/Python/ccpi/framework/framework.py b/Wrappers/Python/ccpi/framework/framework.py index ffc91ae..7236e0e 100755 --- a/Wrappers/Python/ccpi/framework/framework.py +++ b/Wrappers/Python/ccpi/framework/framework.py @@ -764,12 +764,26 @@ class DataContainer(object): return numpy.sqrt(self.squared_norm()) def dot(self, other, *args, **kwargs): '''return the inner product of 2 DataContainers viewed as vectors''' + method = kwargs.get('method', 'reduce') + if method not in ['numpy','reduce']: + raise ValueError('dot: specified method not valid. Expecting numpy or reduce got {} '.format( + method)) if self.shape == other.shape: - return numpy.dot(self.as_array().ravel(), other.as_array().ravel()) + # return (self*other).sum() + if method == 'numpy': + return numpy.dot(self.as_array().ravel(), other.as_array()) + elif method == 'reduce': + # see https://github.com/vais-ral/CCPi-Framework/pull/273 + # notice that Python seems to be smart enough to use + # the appropriate type to hold the result of the reduction + sf = reduce(lambda x,y: x + y[0]*y[1], + zip(self.as_array().ravel(), + other.as_array().ravel()), + 0) + return sf else: raise ValueError('Shapes are not aligned: {} != {}'.format(self.shape, other.shape)) - - + diff --git a/Wrappers/Python/ccpi/optimisation/algs.py b/Wrappers/Python/ccpi/optimisation/algs.py index 89b5519..f5ba85e 100755 --- a/Wrappers/Python/ccpi/optimisation/algs.py +++ b/Wrappers/Python/ccpi/optimisation/algs.py @@ -20,13 +20,8 @@ import numpy import time -from ccpi.optimisation.functions import Function -from ccpi.optimisation.functions import ZeroFunction -from ccpi.framework import ImageData -from ccpi.framework import AcquisitionData -from ccpi.optimisation.spdhg import spdhg -from ccpi.optimisation.spdhg import KullbackLeibler -from ccpi.optimisation.spdhg import KullbackLeiblerConvexConjugate + + def FISTA(x_init, f=None, g=None, opt=None): '''Fast Iterative Shrinkage-Thresholding Algorithm diff --git a/Wrappers/Python/test/test_DataContainer.py b/Wrappers/Python/test/test_DataContainer.py index 8e8ab87..e92d4c6 100755 --- a/Wrappers/Python/test/test_DataContainer.py +++ b/Wrappers/Python/test/test_DataContainer.py @@ -455,6 +455,11 @@ class TestDataContainer(unittest.TestCase): self.assertTrue(False) except ValueError as ve: self.assertTrue(True) + + print ("test dot numpy") + n0 = (ds0 * ds1).sum() + n1 = ds0.as_array().ravel().dot(ds1.as_array().ravel()) + self.assertEqual(n0, n1) diff --git a/Wrappers/Python/wip/compare_CGLS_algos.py b/Wrappers/Python/wip/compare_CGLS_algos.py new file mode 100644 index 0000000..119752c --- /dev/null +++ b/Wrappers/Python/wip/compare_CGLS_algos.py @@ -0,0 +1,127 @@ +# This demo illustrates how to use the SIRT algorithm without and with +# nonnegativity and box constraints. The ASTRA 2D projectors are used. + +# First make all imports +from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, \ + AcquisitionData +from ccpi.optimisation.algs import FISTA, FBPD, CGLS, SIRT +from ccpi.astra.operators import AstraProjectorSimple + +from ccpi.optimisation.algorithms import CGLS as CGLSalg + +import numpy as np +import matplotlib.pyplot as plt + +# Choose either a parallel-beam (1=parallel2D) or fan-beam (2=cone2D) test case +test_case = 1 + +# Set up phantom size NxN by creating ImageGeometry, initialising the +# ImageData object with this geometry and empty array and finally put some +# data into its array, and display as image. +N = 128 +ig = ImageGeometry(voxel_num_x=N,voxel_num_y=N) +Phantom = ImageData(geometry=ig) + +x = Phantom.as_array() +x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 +x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 + +#plt.figure() +#plt.imshow(x) +#plt.title('Phantom image') +#plt.show() + +# Set up AcquisitionGeometry object to hold the parameters of the measurement +# setup geometry: # Number of angles, the actual angles from 0 to +# pi for parallel beam and 0 to 2pi for fanbeam, set the width of a detector +# pixel relative to an object pixel, the number of detector pixels, and the +# source-origin and origin-detector distance (here the origin-detector distance +# set to 0 to simulate a "virtual detector" with same detector pixel size as +# object pixel size). +angles_num = 20 +det_w = 1.0 +det_num = N +SourceOrig = 200 +OrigDetec = 0 + +if test_case==1: + angles = np.linspace(0,np.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('parallel', + '2D', + angles, + det_num,det_w) +elif test_case==2: + angles = np.linspace(0,2*np.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('cone', + '2D', + angles, + det_num, + det_w, + dist_source_center=SourceOrig, + dist_center_detector=OrigDetec) +else: + NotImplemented + +# Set up Operator object combining the ImageGeometry and AcquisitionGeometry +# wrapping calls to ASTRA as well as specifying whether to use CPU or GPU. +Aop = AstraProjectorSimple(ig, ag, 'cpu') + +# Forward and backprojection are available as methods direct and adjoint. Here +# generate test data b and do simple backprojection to obtain z. +b = Aop.direct(Phantom) +z = Aop.adjoint(b) + +#plt.figure() +#plt.imshow(b.array) +#plt.title('Simulated data') +#plt.show() + +#plt.figure() +#plt.imshow(z.array) +#plt.title('Backprojected data') +#plt.show() + +# Using the test data b, different reconstruction methods can now be set up as +# demonstrated in the rest of this file. In general all methods need an initial +# guess and some algorithm options to be set: +x_init = ImageData(np.zeros(x.shape),geometry=ig) +opt = {'tol': 1e-4, 'iter': 7} + +# First a CGLS reconstruction using the function version of CGLS can be done: +x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, b, opt) + +#plt.figure() +#plt.imshow(x_CGLS.array) +#plt.title('CGLS') +#plt.colorbar() +#plt.show() + +#plt.figure() +#plt.semilogy(criter_CGLS) +#plt.title('CGLS criterion') +#plt.show() + + + +# Now CLGS using the algorithm class +CGLS_alg = CGLSalg() +CGLS_alg.set_up(x_init, Aop, b ) +CGLS_alg.max_iteration = 2000 +CGLS_alg.run(opt['iter']) +x_CGLS_alg = CGLS_alg.get_output() + +#plt.figure() +#plt.imshow(x_CGLS_alg.as_array()) +#plt.title('CGLS ALG') +#plt.colorbar() +#plt.show() + +#plt.figure() +#plt.semilogy(CGLS_alg.objective) +#plt.title('CGLS criterion') +#plt.show() + +print(criter_CGLS) +print(CGLS_alg.objective) + +print((x_CGLS - x_CGLS_alg).norm())
\ No newline at end of file |