summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
authorepapoutsellis <epapoutsellis@gmail.com>2019-04-23 09:43:21 +0100
committerepapoutsellis <epapoutsellis@gmail.com>2019-04-23 09:43:21 +0100
commit336a22bca672b55fd9ca999f777dd53796d2e7ea (patch)
treec57449a339c40967489285ca10619e50d212cde1 /Wrappers/Python
parentad31397888520977a21a8cd05578aba2f10c832d (diff)
downloadframework-336a22bca672b55fd9ca999f777dd53796d2e7ea.tar.gz
framework-336a22bca672b55fd9ca999f777dd53796d2e7ea.tar.bz2
framework-336a22bca672b55fd9ca999f777dd53796d2e7ea.tar.xz
framework-336a22bca672b55fd9ca999f777dd53796d2e7ea.zip
add sym grad
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py212
1 files changed, 105 insertions, 107 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
index 25af156..3c15fa1 100644
--- a/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
+++ b/Wrappers/Python/ccpi/optimisation/operators/SymmetrizedGradientOperator.py
@@ -14,6 +14,12 @@ from ccpi.optimisation.operators import FiniteDiff, SparseFiniteDiff
class SymmetrizedGradient(Gradient):
+ ''' Symmetrized Gradient, denoted by E: V --> W
+ where V is the Range of the Gradient Operator
+ and W is the Range of the Symmetrized Gradient.
+ '''
+
+
def __init__(self, gm_domain, bnd_cond = 'Neumann', **kwargs):
super(SymmetrizedGradient, self).__init__(gm_domain, bnd_cond, **kwargs)
@@ -37,25 +43,7 @@ class SymmetrizedGradient(Gradient):
self.order_ind = [0,2,1,3]
else:
self.order_ind = [0,3,6,1,4,7,2,5,8]
-
-
-# if self.correlation=='Space':
-# if self.channels>1:
-# pass
-# else:
-## # 2D image ---> Dx v1, Dyv2, Dx
-# tmp = self.gm_domain.geometries + (self.gm_domain.get_item(0),)
-# self.gm_range = BlockGeometry(*tmp )
-# self.ind1 = range(self.gm_domain.get_item(0).length)
-# self.ind2 = range(self.gm_domain.get_item(0).length-1, -1, -1)
-## self.order = myorder = [0,1,2 3]
-#
-# elif self.correlation=='SpaceChannels':
-# if self.channels>1:
-# pass
-# else:
-# raise ValueError('No channels to correlate')
-
+
def direct(self, x, out=None):
@@ -71,10 +59,21 @@ class SymmetrizedGradient(Gradient):
res = [0.5 * sum(x) for x in zip(tmp, tmp1)]
- return BlockDataContainer(*res)
-
-
+ return BlockDataContainer(*res)
+ else:
+
+ ind = 0
+ for i in range(self.gm_domain.shape[0]):
+ for j in range(x.shape[0]):
+ self.FD.direction = i
+ self.FD.adjoint(x.get_item(j), out=out[ind])
+ ind+=1
+ out1 = [out[i] for i in self.order_ind]
+ res = [0.5 * sum(x) for x in zip(out, out1)]
+ out.fill(BlockDataContainer(*res))
+
+
def adjoint(self, x, out=None):
if out is None:
@@ -91,20 +90,20 @@ class SymmetrizedGradient(Gradient):
tmp[k] = tmp1
return BlockDataContainer(*tmp)
-# i = 0
-#
-# tmp = self.gm_domain.allocate()
-# for k in range(tmp.shape[0]):
-# tmp1 = 0
-# for j in range(tmp.shape[0]):
-# self.FD.direction = j
-# tmp1 += self.FD.direct(x[i])
-# i+=1
-# tmp.get_item(k).fill(tmp1)
-# return tmp
-
+
else:
- pass
+
+ tmp = self.gm_domain.allocate()
+ i = 0
+ for k in range(self.gm_domain.shape[0]):
+ tmp1 = 0
+ for j in range(self.gm_domain.shape[0]):
+ self.FD.direction = j
+ self.FD.direct(x[i], out=tmp[j])
+ i+=1
+ tmp1+=tmp[j]
+ out[k].fill(tmp1)
+
def domain_geometry(self):
@@ -117,6 +116,7 @@ class SymmetrizedGradient(Gradient):
#TODO need dot method for BlockDataContainer
return numpy.sqrt(4*self.gm_domain.shape[0])
+
# x0 = self.gm_domain.allocate('random_int')
# self.s1, sall, svec = LinearOperator.PowerMethod(self, 10, x0)
# return self.s1
@@ -126,114 +126,112 @@ class SymmetrizedGradient(Gradient):
if __name__ == '__main__':
###########################################################################
- ## Symmetrized Gradient
+ ## Symmetrized Gradient Tests
from ccpi.framework import DataContainer
from ccpi.optimisation.operators import Gradient, BlockOperator, FiniteDiff
import numpy as np
N, M = 2, 3
K = 2
+ C = 2
ig1 = ImageGeometry(N, M)
- ig2 = ImageGeometry(N, M, K)
+ ig2 = ImageGeometry(N, M, channels=C)
E1 = SymmetrizedGradient(ig1, correlation = 'Space', bnd_cond='Neumann')
- E2 = SymmetrizedGradient(ig2, correlation = 'Space', bnd_cond='Periodic')
- print(E1.domain_geometry().shape, E1.range_geometry().shape)
- print(E2.domain_geometry().shape, E2.range_geometry().shape)
-
- u1 = E1.gm_domain.allocate('random_int')
- a1 = ig1.allocate('random_int')
- a2 = ig1.allocate('random_int')
- a3 = ig1.allocate('random_int')
- w1 = BlockDataContainer(*[a1, a2, a3])
- w11 = BlockDataContainer(*[a1, a2, a2, a3])
+ try:
+ E1 = SymmetrizedGradient(ig1, correlation = 'SpaceChannels', bnd_cond='Neumann')
+ except:
+ print("No Channels to correlate")
- sym_direct = [None]*3
-
- sym_direct[0] = FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').adjoint(u1[0])
- sym_direct[1] = FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').adjoint(u1[1])
- sym_direct[2] = 0.5 * (FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').adjoint(u1[0]) + \
- FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').adjoint(u1[1]))
-
- sym_direct1 = [None]*4
-
- sym_direct1[0] = FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').adjoint(u1[0])
+ E2 = SymmetrizedGradient(ig2, correlation = 'SpaceChannels', bnd_cond='Neumann')
+
+ print(E1.domain_geometry().shape, E1.range_geometry().shape)
+ print(E2.domain_geometry().shape, E2.range_geometry().shape)
- sym_direct1[1] = 0.5 * (FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').adjoint(u1[1]) + \
- FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').adjoint(u1[0]))
+ #check Linear operator property
- sym_direct1[2] = 0.5 * (FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').adjoint(u1[1]) + \
- FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').adjoint(u1[0]))
-
- sym_direct1[3] = FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').adjoint(u1[1])
+ u1 = E1.domain_geometry().allocate('random_int')
+ u2 = E2.domain_geometry().allocate('random_int')
-
-
- sym_adjoint = [None]*2
+ # Need to allocate random_int at the Range of SymGradient
- sym_adjoint[0] = FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').direct(w1[0]) + \
- FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').direct(w1[2])
- sym_adjoint[1] = FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').direct(w1[2]) + \
- FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').direct(w1[1])
-
- sym_adjoint1 = [None]*2
+ #a1 = ig1.allocate('random_int')
+ #a2 = ig1.allocate('random_int')
+ #a3 = ig1.allocate('random_int')
- sym_adjoint1[0] = FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').direct(w11[0]) + \
- FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').direct(w11[1])
- sym_adjoint1[1] = FiniteDiff(ig1, direction = 0, bnd_cond = 'Neumann').direct(w11[2]) + \
- FiniteDiff(ig1, direction = 1, bnd_cond = 'Neumann').direct(w11[3])
-
+ #a4 = ig1.allocate('random_int')
+ #a5 = ig1.allocate('random_int')
+ #a6 = ig1.allocate('random_int')
- LHS = (sym_direct[0] * w1[0] + \
- sym_direct[1] * w1[1] + \
- 2*sym_direct[2] * w1[2]).sum()
+ # TODO allocate has to create this symmetry by default!!!!!
+ #w1 = BlockDataContainer(*[a1, a2, \
+ # a2, a3])
+ w1 = E1.range_geometry().allocate('random_int',symmetry=True)
- RHS = (u1[0]*sym_adjoint[0] + u1[1]*sym_adjoint[1]).sum()
+ LHS = (E1.direct(u1) * w1).sum()
+ RHS = (u1 * E1.adjoint(w1)).sum()
- print(LHS, RHS)
+ numpy.testing.assert_equal(LHS, RHS)
- LHS = (sym_direct1[0] * w11[0] + \
- sym_direct1[1] * w11[1] + \
- sym_direct1[2] * w11[2] + \
- sym_direct1[3] * w11[3] ).sum()
+ u2 = E2.gm_domain.allocate('random_int')
- RHS = (u1[0]*sym_adjoint1[0] + u1[1]*sym_adjoint1[1]).sum()
+ #aa1 = ig2.allocate('random_int')
+ #aa2 = ig2.allocate('random_int')
+ #aa3 = ig2.allocate('random_int')
+ #aa4 = ig2.allocate('random_int')
+ #aa5 = ig2.allocate('random_int')
+ #aa6 = ig2.allocate('random_int')
- print(LHS, RHS)
+ #w2 = BlockDataContainer(*[aa1, aa2, aa3, \
+ # aa2, aa4, aa5, \
+ # aa3, aa5, aa6])
+ w2 = E2.range_geometry().allocate('random_int',symmetry=True)
+
+ LHS1 = (E2.direct(u2) * w2).sum()
+ RHS1 = (u2 * E2.adjoint(w2)).sum()
+ numpy.testing.assert_equal(LHS1, RHS1)
- a1 = (E1.direct(u1) * w11).sum()
- b1 = (u1 * E1.adjoint(w11)).sum()
- print(a1, b1)
+ out = E1.range_geometry().allocate()
+ E1.direct(u1, out=out)
+ a1 = E1.direct(u1)
+ numpy.testing.assert_array_equal(a1[0].as_array(), out[0].as_array())
+ numpy.testing.assert_array_equal(a1[1].as_array(), out[1].as_array())
+ numpy.testing.assert_array_equal(a1[2].as_array(), out[2].as_array())
+ numpy.testing.assert_array_equal(a1[3].as_array(), out[3].as_array())
- u2 = E2.gm_domain.allocate('random_int')
+ out1 = E1.domain_geometry().allocate()
+ E1.adjoint(w1, out=out1)
+ b1 = E1.adjoint(w1)
- aa1 = ig2.allocate('random_int')
- aa2 = ig2.allocate('random_int')
- aa3 = ig2.allocate('random_int')
- aa4 = ig2.allocate('random_int')
- aa5 = ig2.allocate('random_int')
- aa6 = ig2.allocate('random_int')
+ LHS_out = (out * w1).sum()
+ RHS_out = (u1 * out1).sum()
+ print(LHS_out, RHS_out)
- w2 = BlockDataContainer(*[aa1, aa2, aa3, \
- aa2, aa4, aa5, \
- aa3, aa5, aa6])
- tmp1 = E2.direct(u2)
- tmp2 = E2.adjoint(w2)
- c1 = (tmp1 * w2).sum()
- d1 = (u2 * tmp2).sum()
+ out2 = E2.range_geometry().allocate()
+ E2.direct(u2, out=out2)
+ a2 = E2.direct(u2)
- print(c1, d1)
+ out21 = E2.domain_geometry().allocate()
+ E2.adjoint(w2, out=out21)
+ b2 = E2.adjoint(w2)
+ LHS_out = (out2 * w2).sum()
+ RHS_out = (u2 * out21).sum()
+ print(LHS_out, RHS_out)
- \ No newline at end of file
+
+#
+#
+#
+# \ No newline at end of file