summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2019-03-14 15:06:59 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2019-03-14 15:06:59 +0000
commit0f1b5e9ef2619eff4cc158d8e2e05a9d19b8393a (patch)
treed5f23e3b8a47e7676ff5918267f8023ca37f85ad /Wrappers/Python
parent3879c21f0cf2a7cf7d885ea20f1cc9363c9ecbe8 (diff)
downloadframework-0f1b5e9ef2619eff4cc158d8e2e05a9d19b8393a.tar.gz
framework-0f1b5e9ef2619eff4cc158d8e2e05a9d19b8393a.tar.bz2
framework-0f1b5e9ef2619eff4cc158d8e2e05a9d19b8393a.tar.xz
framework-0f1b5e9ef2619eff4cc158d8e2e05a9d19b8393a.zip
added docstrings
Diffstat (limited to 'Wrappers/Python')
-rwxr-xr-xWrappers/Python/ccpi/optimisation/functions/Function.py26
1 files changed, 19 insertions, 7 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/functions/Function.py b/Wrappers/Python/ccpi/optimisation/functions/Function.py
index 27a5f01..fa81dfc 100755
--- a/Wrappers/Python/ccpi/optimisation/functions/Function.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/Function.py
@@ -23,28 +23,40 @@ class Function(object):
'''Abstract class representing a function
Members:
- L is the Lipschitz constant of the gradient of the Function
- alpha is scaling parameter of the function.
+ L is the Lipschitz constant of the gradient of the Function
'''
def __init__(self):
self.L = None
+
def __call__(self,x, out=None):
+ '''Evaluates the function at x '''
raise NotImplementedError
- def call_adjoint(self, x, out=None):
+
+ def gradient(self, x, out=None):
+ '''Returns the gradient of the function at x, if the function is differentiable'''
raise NotImplementedError
+
+ def proximal(self, x, tau, out=None):
+ '''This returns the proximal operator for the function at x, tau'''
+ raise NotImplementedError
+
def convex_conjugate(self, x, out=None):
+ '''This evaluates the convex conjugate of the function at x'''
raise NotImplementedError
+
def proximal_conjugate(self, x, tau, out = None):
+ '''This returns the proximal operator for the convex conjugate of the function at x, tau'''
raise NotImplementedError
+
def grad(self, x):
+ '''Alias of gradient(x,None)'''
warnings.warn('''This method will disappear in following
versions of the CIL. Use gradient instead''', DeprecationWarning)
return self.gradient(x, out=None)
+
def prox(self, x, tau):
+ '''Alias of proximal(x, tau, None)'''
warnings.warn('''This method will disappear in following
versions of the CIL. Use proximal instead''', DeprecationWarning)
return self.proximal(x, out=None)
- def gradient(self, x, out=None):
- raise NotImplementedError
- def proximal(self, x, tau, out=None):
- raise NotImplementedError \ No newline at end of file
+