diff options
author | epapoutsellis <epapoutsellis@gmail.com> | 2019-06-12 10:41:30 +0100 |
---|---|---|
committer | epapoutsellis <epapoutsellis@gmail.com> | 2019-06-12 10:41:30 +0100 |
commit | ec479c78c8956a1645604a780c2eb8c0d601165b (patch) | |
tree | 214a13492b76aa16ae91e2dd2b6af111f489018e | |
parent | 147b807c8883025b85baecfe5e10e007cb1babc9 (diff) | |
download | framework-ec479c78c8956a1645604a780c2eb8c0d601165b.tar.gz framework-ec479c78c8956a1645604a780c2eb8c0d601165b.tar.bz2 framework-ec479c78c8956a1645604a780c2eb8c0d601165b.tar.xz framework-ec479c78c8956a1645604a780c2eb8c0d601165b.zip |
delete old demos
-rw-r--r-- | Wrappers/Python/demos/PDHG_examples/MultiChannel/PDHG_TV_Denoising_2D_time.py | 192 | ||||
-rw-r--r-- | Wrappers/Python/demos/PDHG_examples/MultiChannel/PDHG_TV_Denoising_Gaussian_3D.py | 181 |
2 files changed, 0 insertions, 373 deletions
diff --git a/Wrappers/Python/demos/PDHG_examples/MultiChannel/PDHG_TV_Denoising_2D_time.py b/Wrappers/Python/demos/PDHG_examples/MultiChannel/PDHG_TV_Denoising_2D_time.py deleted file mode 100644 index 14608db..0000000 --- a/Wrappers/Python/demos/PDHG_examples/MultiChannel/PDHG_TV_Denoising_2D_time.py +++ /dev/null @@ -1,192 +0,0 @@ -#======================================================================== -# Copyright 2019 Science Technology Facilities Council -# Copyright 2019 University of Manchester -# -# This work is part of the Core Imaging Library developed by Science Technology -# Facilities Council and University of Manchester -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0.txt -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -#========================================================================= - -from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, AcquisitionData - -import numpy as np -import numpy -import matplotlib.pyplot as plt - -from ccpi.optimisation.algorithms import PDHG - -from ccpi.optimisation.operators import BlockOperator, Gradient, Identity -from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \ - MixedL21Norm, BlockFunction - -from ccpi.astra.ops import AstraProjectorMC - -import os -import tomophantom -from tomophantom import TomoP2D - -# Create phantom for TV 2D dynamic tomography - -model = 102 # note that the selected model is temporal (2D + time) -N = 128 # set dimension of the phantom -# one can specify an exact path to the parameters file -# path_library2D = '../../../PhantomLibrary/models/Phantom2DLibrary.dat' -path = os.path.dirname(tomophantom.__file__) -path_library2D = os.path.join(path, "Phantom2DLibrary.dat") -#This will generate a N_size x N_size x Time frames phantom (2D + time) -phantom_2Dt = TomoP2D.ModelTemporal(model, N, path_library2D) - -plt.close('all') -plt.figure(1) -plt.rcParams.update({'font.size': 21}) -plt.title('{}''{}'.format('2D+t phantom using model no.',model)) -for sl in range(0,np.shape(phantom_2Dt)[0]): - im = phantom_2Dt[sl,:,:] - plt.imshow(im, vmin=0, vmax=1) -# plt.pause(.1) -# plt.draw - - -ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N, channels = np.shape(phantom_2Dt)[0]) -data = ImageData(phantom_2Dt, geometry=ig) -ag = ig - -# Create Noisy data. Add Gaussian noise -np.random.seed(10) -noisy_data = ImageData( data.as_array() + np.random.normal(0, 0.25, size=ig.shape) ) - -tindex = [3, 6, 10] - -fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(10, 10)) -plt.subplot(1,3,1) -plt.imshow(noisy_data.as_array()[tindex[0],:,:]) -plt.axis('off') -plt.title('Time {}'.format(tindex[0])) -plt.subplot(1,3,2) -plt.imshow(noisy_data.as_array()[tindex[1],:,:]) -plt.axis('off') -plt.title('Time {}'.format(tindex[1])) -plt.subplot(1,3,3) -plt.imshow(noisy_data.as_array()[tindex[2],:,:]) -plt.axis('off') -plt.title('Time {}'.format(tindex[2])) - -fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8, - wspace=0.02, hspace=0.02) - -plt.show() - -#%% -# Regularisation Parameter -alpha = 0.3 - -# Create operators -#op1 = Gradient(ig) -op1 = Gradient(ig, correlation='Space') -op2 = Gradient(ig, correlation='SpaceChannels') - -op3 = Identity(ig, ag) - -# Create BlockOperator -operator1 = BlockOperator(op1, op3, shape=(2,1) ) -operator2 = BlockOperator(op2, op3, shape=(2,1) ) - -# Create functions - -f1 = alpha * MixedL21Norm() -f2 = 0.5 * L2NormSquared(b = noisy_data) -f = BlockFunction(f1, f2) - -g = ZeroFunction() - -# Compute operator Norm -normK1 = operator1.norm() -normK2 = operator2.norm() - -#%% -# Primal & dual stepsizes -sigma1 = 1 -tau1 = 1/(sigma1*normK1**2) - -sigma2 = 1 -tau2 = 1/(sigma2*normK2**2) - -# Setup and run the PDHG algorithm -pdhg1 = PDHG(f=f,g=g,operator=operator1, tau=tau1, sigma=sigma1) -pdhg1.max_iteration = 2000 -pdhg1.update_objective_interval = 200 -pdhg1.run(2000) - -# Setup and run the PDHG algorithm -pdhg2 = PDHG(f=f,g=g,operator=operator2, tau=tau2, sigma=sigma2) -pdhg2.max_iteration = 2000 -pdhg2.update_objective_interval = 200 -pdhg2.run(2000) - - -#%% - -tindex = [3, 6, 10] -fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(10, 8)) - -plt.subplot(3,3,1) -plt.imshow(phantom_2Dt[tindex[0],:,:]) -plt.axis('off') -plt.title('Time {}'.format(tindex[0])) - -plt.subplot(3,3,2) -plt.imshow(phantom_2Dt[tindex[1],:,:]) -plt.axis('off') -plt.title('Time {}'.format(tindex[1])) - -plt.subplot(3,3,3) -plt.imshow(phantom_2Dt[tindex[2],:,:]) -plt.axis('off') -plt.title('Time {}'.format(tindex[2])) - -plt.subplot(3,3,4) -plt.imshow(pdhg1.get_output().as_array()[tindex[0],:,:]) -plt.axis('off') -plt.subplot(3,3,5) -plt.imshow(pdhg1.get_output().as_array()[tindex[1],:,:]) -plt.axis('off') -plt.subplot(3,3,6) -plt.imshow(pdhg1.get_output().as_array()[tindex[2],:,:]) -plt.axis('off') - - -plt.subplot(3,3,7) -plt.imshow(pdhg2.get_output().as_array()[tindex[0],:,:]) -plt.axis('off') -plt.subplot(3,3,8) -plt.imshow(pdhg2.get_output().as_array()[tindex[1],:,:]) -plt.axis('off') -plt.subplot(3,3,9) -plt.imshow(pdhg2.get_output().as_array()[tindex[2],:,:]) -plt.axis('off') - -#%% -im = plt.imshow(pdhg1.get_output().as_array()[tindex[0],:,:]) - - -fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8, - wspace=0.02, hspace=0.02) - -cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8]) -cbar = fig.colorbar(im, cax=cb_ax) - - -plt.show() - diff --git a/Wrappers/Python/demos/PDHG_examples/MultiChannel/PDHG_TV_Denoising_Gaussian_3D.py b/Wrappers/Python/demos/PDHG_examples/MultiChannel/PDHG_TV_Denoising_Gaussian_3D.py deleted file mode 100644 index 03dc2ef..0000000 --- a/Wrappers/Python/demos/PDHG_examples/MultiChannel/PDHG_TV_Denoising_Gaussian_3D.py +++ /dev/null @@ -1,181 +0,0 @@ -#======================================================================== -# Copyright 2019 Science Technology Facilities Council -# Copyright 2019 University of Manchester -# -# This work is part of the Core Imaging Library developed by Science Technology -# Facilities Council and University of Manchester -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0.txt -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -#========================================================================= -""" - -Total Variation (3D) Denoising using PDHG algorithm: - - -Problem: min_{x} \alpha * ||\nabla x||_{2,1} + \frac{1}{2} * || x - g ||_{2}^{2} - - \alpha: Regularization parameter - - \nabla: Gradient operator - - g: Noisy Data with Gaussian Noise - - Method = 0 ( PDHG - split ) : K = [ \nabla, - Identity] - - - Method = 1 (PDHG - explicit ): K = \nabla - -""" - -from ccpi.framework import ImageData, ImageGeometry - -import matplotlib.pyplot as plt - -from ccpi.optimisation.algorithms import PDHG - -from ccpi.optimisation.operators import BlockOperator, Identity, Gradient -from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \ - MixedL21Norm, BlockFunction - -from skimage.util import random_noise - -# Create phantom for TV Gaussian denoising -import timeit -import os -from tomophantom import TomoP3D -import tomophantom - -print ("Building 3D phantom using TomoPhantom software") -tic=timeit.default_timer() -model = 13 # select a model number from the library -N = 64 # Define phantom dimensions using a scalar value (cubic phantom) -path = os.path.dirname(tomophantom.__file__) -path_library3D = os.path.join(path, "Phantom3DLibrary.dat") - -#This will generate a N x N x N phantom (3D) -phantom_tm = TomoP3D.Model(model, N, path_library3D) - -#%% - -# Create noisy data. Add Gaussian noise -ig = ImageGeometry(voxel_num_x=N, voxel_num_y=N, voxel_num_z=N) -ag = ig -n1 = random_noise(phantom_tm, mode = 'gaussian', mean=0, var = 0.001, seed=10) -noisy_data = ImageData(n1) - -sliceSel = int(0.5*N) -plt.figure(figsize=(15,15)) -plt.subplot(3,1,1) -plt.imshow(noisy_data.as_array()[sliceSel,:,:],vmin=0, vmax=1) -plt.title('Axial View') -plt.colorbar() -plt.subplot(3,1,2) -plt.imshow(noisy_data.as_array()[:,sliceSel,:],vmin=0, vmax=1) -plt.title('Coronal View') -plt.colorbar() -plt.subplot(3,1,3) -plt.imshow(noisy_data.as_array()[:,:,sliceSel],vmin=0, vmax=1) -plt.title('Sagittal View') -plt.colorbar() -plt.show() - -#%% - -# Regularisation Parameter -alpha = 0.05 - -method = '0' - -if method == '0': - - # Create operators - op1 = Gradient(ig) - op2 = Identity(ig, ag) - - # Create BlockOperator - operator = BlockOperator(op1, op2, shape=(2,1) ) - - # Create functions - - f1 = alpha * MixedL21Norm() - f2 = 0.5 * L2NormSquared(b = noisy_data) - f = BlockFunction(f1, f2) - - g = ZeroFunction() - -else: - - # Without the "Block Framework" - operator = Gradient(ig) - f = alpha * MixedL21Norm() - g = 0.5 * L2NormSquared(b = noisy_data) - - -# Compute operator Norm -normK = operator.norm() - -# Primal & dual stepsizes -sigma = 1 -tau = 1/(sigma*normK**2) - -# Setup and run the PDHG algorithm -pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True) -pdhg.max_iteration = 2000 -pdhg.update_objective_interval = 200 -pdhg.run(2000, verbose = True) - - -#%% -fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(10, 8)) -fig.suptitle('TV Reconstruction',fontsize=20) - - -plt.subplot(2,3,1) -plt.imshow(noisy_data.as_array()[sliceSel,:,:],vmin=0, vmax=1) -plt.axis('off') -plt.title('Axial View') - -plt.subplot(2,3,2) -plt.imshow(noisy_data.as_array()[:,sliceSel,:],vmin=0, vmax=1) -plt.axis('off') -plt.title('Coronal View') - -plt.subplot(2,3,3) -plt.imshow(noisy_data.as_array()[:,:,sliceSel],vmin=0, vmax=1) -plt.axis('off') -plt.title('Sagittal View') - - -plt.subplot(2,3,4) -plt.imshow(pdhg.get_output().as_array()[sliceSel,:,:],vmin=0, vmax=1) -plt.axis('off') -plt.subplot(2,3,5) -plt.imshow(pdhg.get_output().as_array()[:,sliceSel,:],vmin=0, vmax=1) -plt.axis('off') -plt.subplot(2,3,6) -plt.imshow(pdhg.get_output().as_array()[:,:,sliceSel],vmin=0, vmax=1) -plt.axis('off') -im = plt.imshow(pdhg.get_output().as_array()[:,:,sliceSel],vmin=0, vmax=1) - - -fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8, - wspace=0.02, hspace=0.02) - -cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8]) -cbar = fig.colorbar(im, cax=cb_ax) - - -plt.show() - |