summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorepapoutsellis <epapoutsellis@gmail.com>2019-04-17 17:53:31 +0100
committerepapoutsellis <epapoutsellis@gmail.com>2019-04-17 17:53:31 +0100
commitdf538e0d55513274ba27285764783359ef7b5c6c (patch)
tree8e4848035f0f1808ed61f5337bff817888040d19
parent0bc7e54e090abbf75c75312d8787d922abde1f13 (diff)
downloadframework-df538e0d55513274ba27285764783359ef7b5c6c.tar.gz
framework-df538e0d55513274ba27285764783359ef7b5c6c.tar.bz2
framework-df538e0d55513274ba27285764783359ef7b5c6c.tar.xz
framework-df538e0d55513274ba27285764783359ef7b5c6c.zip
fix with cvxpy tomo2D recon
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py2
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py12
-rwxr-xr-xWrappers/Python/wip/pdhg_TV_denoising.py17
-rw-r--r--Wrappers/Python/wip/pdhg_TV_denoising_salt_pepper.py9
-rw-r--r--Wrappers/Python/wip/pdhg_TV_tomography2D.py102
-rw-r--r--Wrappers/Python/wip/pdhg_tv_denoising_poisson.py8
6 files changed, 116 insertions, 34 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
index c0c2c10..6360ac1 100644
--- a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
@@ -182,7 +182,7 @@ def PDHG_old(f, g, operator, tau = None, sigma = None, opt = None, **kwargs):
f.proximal_conjugate(y_tmp, sigma, out=y)
operator.adjoint(y, out = x_tmp)
- x_tmp *= -tau
+ x_tmp *= -1*tau
x_tmp += x_old
g.proximal(x_tmp, tau, out = x)
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
index 8a16c28..ca6e7a7 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/L2NormSquared.py
@@ -94,12 +94,12 @@ class L2NormSquared(Function):
return x/(1+2*tau)
else:
- tmp = x.subtract(self.b)
- #tmp -= self.b
- tmp /= (1+2*tau)
- tmp += self.b
- return tmp
-# return (x-self.b)/(1+2*tau) + self.b
+# tmp = x.subtract(self.b)
+# tmp -= self.b
+# tmp /= (1+2*tau)
+# tmp += self.b
+# return tmp
+ return (x-self.b)/(1+2*tau) + self.b
# if self.b is not None:
# out=x
diff --git a/Wrappers/Python/wip/pdhg_TV_denoising.py b/Wrappers/Python/wip/pdhg_TV_denoising.py
index 0e7f628..f3980c4 100755
--- a/Wrappers/Python/wip/pdhg_TV_denoising.py
+++ b/Wrappers/Python/wip/pdhg_TV_denoising.py
@@ -45,7 +45,7 @@ plt.title('Noisy data')
plt.show()
# Regularisation Parameter
-alpha = 2
+alpha = 0.5
#method = input("Enter structure of PDHG (0=Composite or 1=NotComposite): ")
method = '1'
@@ -83,8 +83,8 @@ normK = operator.norm()
sigma = 1
tau = 1/(sigma*normK**2)
-opt = {'niter':2000}
-opt1 = {'niter':2000, 'memopt': True}
+opt = {'niter':5000}
+opt1 = {'niter':5000, 'memopt': True}
t1 = timer()
res, time, primal, dual, pdgap = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)
@@ -149,7 +149,8 @@ if cvx_not_installable:
if 'MOSEK' in installed_solvers():
solver = MOSEK
else:
- solver = SCS
+ solver = SCS
+
obj = Minimize( regulariser + fidelity)
prob = Problem(obj)
result = prob.solve(verbose = True, solver = solver)
@@ -172,6 +173,14 @@ if cvx_not_installable:
plt.imshow(diff_cvx)
plt.title('Difference')
plt.colorbar()
+ plt.show()
+
+ plt.plot(np.linspace(0,N,N), res1.as_array()[int(N/2),:], label = 'PDHG')
+ plt.plot(np.linspace(0,N,N), u.value[int(N/2),:], label = 'CVX')
+ plt.legend()
+
+
+
print('Primal Objective (CVX) {} '.format(obj.value))
print('Primal Objective (PDHG) {} '.format(primal[-1]))
diff --git a/Wrappers/Python/wip/pdhg_TV_denoising_salt_pepper.py b/Wrappers/Python/wip/pdhg_TV_denoising_salt_pepper.py
index cec9770..364d879 100644
--- a/Wrappers/Python/wip/pdhg_TV_denoising_salt_pepper.py
+++ b/Wrappers/Python/wip/pdhg_TV_denoising_salt_pepper.py
@@ -54,13 +54,8 @@ if method == '0':
op1 = Gradient(ig)
op2 = Identity(ig, ag)
- # Form Composite Operator
operator = BlockOperator(op1, op2, shape=(2,1) )
- #### Create functions
-# f = FunctionComposition_new(operator, mixed_L12Norm(alpha), \
-# L2NormSq(0.5, b = noisy_data) )
-
f1 = alpha * MixedL21Norm()
f2 = L1Norm(b = noisy_data)
@@ -73,12 +68,12 @@ else:
# No Composite #
###########################################################################
operator = Gradient(ig)
- f = alpha * FunctionOperatorComposition(operator, MixedL21Norm())
+ f = alpha * MixedL21Norm()
g = L1Norm(b = noisy_data)
###########################################################################
#%%
-diag_precon = True
+diag_precon = False
if diag_precon:
diff --git a/Wrappers/Python/wip/pdhg_TV_tomography2D.py b/Wrappers/Python/wip/pdhg_TV_tomography2D.py
index d0ef097..1d4023b 100644
--- a/Wrappers/Python/wip/pdhg_TV_tomography2D.py
+++ b/Wrappers/Python/wip/pdhg_TV_tomography2D.py
@@ -43,7 +43,7 @@ from timeit import default_timer as timer
#ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
#data = ImageData(phantom_2D, geometry=ig)
-N = 75
+N = 50
x = np.zeros((N,N))
x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
@@ -52,8 +52,8 @@ data = ImageData(x)
ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
-detectors = 150
-angles = np.linspace(0,np.pi,100)
+detectors = 50
+angles = np.linspace(0,np.pi,50)
ag = AcquisitionGeometry('parallel','2D',angles, detectors)
Aop = AstraProjectorSimple(ig, ag, 'cpu')
@@ -75,11 +75,6 @@ plt.title('Noisy Sinogram')
plt.colorbar()
plt.show()
-
-#%% Works only with Composite Operator Structure of PDHG
-
-#ig = ImageGeometry(voxel_num_x = N, voxel_num_y = N)
-
# Create operators
op1 = Gradient(ig)
op2 = Aop
@@ -109,19 +104,18 @@ if diag_precon:
tau, sigma = tau_sigma_precond(operator)
-else:
+else:
+ normK = operator.norm()
sigma = 1
tau = 1/(sigma*normK**2)
# Compute operator Norm
-normK = operator.norm()
+
# Primal & dual stepsizes
-sigma = 1
-tau = 1/(sigma*normK**2)
-opt = {'niter':2000}
-opt1 = {'niter':2000, 'memopt': True}
+opt = {'niter':5000}
+opt1 = {'niter':5000, 'memopt': True}
t1 = timer()
res, time, primal, dual, pdgap = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)
@@ -132,9 +126,7 @@ t3 = timer()
res1, time1, primal1, dual1, pdgap1 = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt1)
t4 = timer()
#
-print ("No memopt in {}s, memopt in {}s ".format(t2-t1, t4 -t3))
-#%%
plt.figure(figsize=(15,15))
plt.subplot(3,1,1)
plt.imshow(res.as_array())
@@ -160,3 +152,81 @@ diff = (res1 - res).abs().as_array().max()
#
print(" Max of abs difference is {}".format(diff))
+
+#%% Check with CVX solution
+
+from ccpi.optimisation.operators import SparseFiniteDiff
+import astra
+import numpy
+
+try:
+ from cvxpy import *
+ cvx_not_installable = True
+except ImportError:
+ cvx_not_installable = False
+
+
+if cvx_not_installable:
+
+
+ u = Variable( N*N)
+
+ DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann')
+ DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann')
+
+ regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u), DY.matrix() * vec(u)]), 2, axis = 0))
+
+ # create matrix representation for Astra operator
+
+ vol_geom = astra.create_vol_geom(N, N)
+ proj_geom = astra.create_proj_geom('parallel', 1.0, detectors, angles)
+
+ proj_id = astra.create_projector('strip', proj_geom, vol_geom)
+
+ matrix_id = astra.projector.matrix(proj_id)
+
+ ProjMat = astra.matrix.get(matrix_id)
+
+ fidelity = 0.5 * sum_squares(ProjMat * u - noisy_data.as_array().ravel())
+
+ # choose solver
+ if 'MOSEK' in installed_solvers():
+ solver = MOSEK
+ else:
+ solver = SCS
+
+ obj = Minimize( regulariser + fidelity)
+ prob = Problem(obj)
+ result = prob.solve(verbose = True, solver = solver)
+
+#%%
+
+ u_rs = np.reshape(u.value, (N,N))
+
+ diff_cvx = numpy.abs( res.as_array() - u_rs )
+
+ # Show result
+ plt.figure(figsize=(15,15))
+ plt.subplot(3,1,1)
+ plt.imshow(res.as_array())
+ plt.title('PDHG solution')
+ plt.colorbar()
+
+ plt.subplot(3,1,2)
+ plt.imshow(u_rs)
+ plt.title('CVX solution')
+ plt.colorbar()
+
+ plt.subplot(3,1,3)
+ plt.imshow(diff_cvx)
+ plt.title('Difference')
+ plt.colorbar()
+ plt.show()
+
+ plt.plot(np.linspace(0,N,N), res1.as_array()[int(N/2),:], label = 'PDHG')
+ plt.plot(np.linspace(0,N,N), u_rs[int(N/2),:], label = 'CVX')
+ plt.legend()
+
+
+ print('Primal Objective (CVX) {} '.format(obj.value))
+ print('Primal Objective (PDHG) {} '.format(primal[-1])) \ No newline at end of file
diff --git a/Wrappers/Python/wip/pdhg_tv_denoising_poisson.py b/Wrappers/Python/wip/pdhg_tv_denoising_poisson.py
index ec745a2..82384ef 100644
--- a/Wrappers/Python/wip/pdhg_tv_denoising_poisson.py
+++ b/Wrappers/Python/wip/pdhg_tv_denoising_poisson.py
@@ -169,9 +169,17 @@ if cvx_not_installable:
plt.imshow(diff_cvx)
plt.title('Difference')
plt.colorbar()
+ plt.show()
+
+ plt.plot(np.linspace(0,N,N), res1.as_array()[int(N/2),:], label = 'PDHG')
+ plt.plot(np.linspace(0,N,N), u1.value[int(N/2),:], label = 'CVX')
+ plt.legend()
+
print('Primal Objective (CVX) {} '.format(obj.value))
print('Primal Objective (PDHG) {} '.format(primal[-1]))
+
+