summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorepapoutsellis <epapoutsellis@gmail.com>2019-05-10 12:24:29 +0100
committerepapoutsellis <epapoutsellis@gmail.com>2019-05-10 12:24:29 +0100
commitdb6697057dbbc3661fdd627a2c9fc43cbf728cbd (patch)
treecce7754cdf36c5822727c5fa5ebfae1e0f6b30eb
parent0be5952b3d84abf7e998303bf5613dfce675e725 (diff)
downloadframework-db6697057dbbc3661fdd627a2c9fc43cbf728cbd.tar.gz
framework-db6697057dbbc3661fdd627a2c9fc43cbf728cbd.tar.bz2
framework-db6697057dbbc3661fdd627a2c9fc43cbf728cbd.tar.xz
framework-db6697057dbbc3661fdd627a2c9fc43cbf728cbd.zip
fix methods
-rwxr-xr-xWrappers/Python/ccpi/optimisation/functions/IndicatorBox.py119
1 files changed, 88 insertions, 31 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py b/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py
index df8dc89..dd2162c 100755
--- a/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/IndicatorBox.py
@@ -1,21 +1,25 @@
-# -*- coding: utf-8 -*-
-# This work is part of the Core Imaging Library developed by
-# Visual Analytics and Imaging System Group of the Science Technology
-# Facilities Council, STFC
+#========================================================================
+# Copyright 2019 Science Technology Facilities Council
+# Copyright 2019 University of Manchester
+#
+# This work is part of the Core Imaging Library developed by Science Technology
+# Facilities Council and University of Manchester
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0.txt
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+#=========================================================================
-# Copyright 2018-2019 Jakob Jorgensen, Daniil Kazantsev and Edoardo Pasca
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-
-# http://www.apache.org/licenses/LICENSE-2.0
-
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
from ccpi.optimisation.functions import Function
import numpy
@@ -43,23 +47,76 @@ class IndicatorBox(Function):
val = numpy.inf
return val
- def prox(self,x,tau=None):
- return (x.maximum(self.lower)).minimum(self.upper)
+ def gradient(self,x):
+ return ValueError('Not Differentiable')
+
+ def convex_conjugate(self,x):
+ # support function sup <x^*, x>
+ return 0
def proximal(self, x, tau, out=None):
+
if out is None:
- return self.prox(x, tau)
+ return (x.maximum(self.lower)).minimum(self.upper)
+ else:
+ x.maximum(self.lower, out=out)
+ out.minimum(self.upper, out=out)
+
+ def proximal_conjugate(self, x, tau, out=None):
+
+ if out is None:
+
+ return x - tau * self.proximal(x/tau, tau)
+
else:
- if not x.shape == out.shape:
- raise ValueError('Norm1 Incompatible size:',
- x.shape, out.shape)
- #(x.abs() - tau*self.gamma).maximum(0) * x.sign()
- x.abs(out = out)
- out.__isub__(tau*self.gamma)
- out.maximum(0, out=out)
- if self.sign_x is None or not x.shape == self.sign_x.shape:
- self.sign_x = x.sign()
- else:
- x.sign(out=self.sign_x)
+
+ self.proximal(x/tau, tau, out=out)
+ out *= -1*tau
+ out += x
+
+
+
+if __name__ == '__main__':
+
+ from ccpi.framework import ImageGeometry
+
+ N, M = 2,3
+ ig = ImageGeometry(voxel_num_x = N, voxel_num_y = M)
+
+ u = ig.allocate('random_int')
+ tau = 10
+
+ f = IndicatorBox(2, 3)
+
+ lower = 10
+ upper = 30
+
+ x = u
+
+ z1 = (x.maximum(lower)).minimum(upper)
+
+ z2 = x - tau * ((x/tau).maximum(lower)).minimum(upper)
+
+ z = z1 + z2/tau
+
+ print(z.array, x.array)
+
+
+# prox = f.proximal(u, tau)
+# prox_conj = f.proximal_conjugate(u/tau, tau)
+#
+#
+# z = prox + tau * prox_conj
+# print(z.as_array(), u.array)
+
+
+# x - tau * ((x/tau).maximum(self.lower)).minimum(self.upper) +
+
+
+
+
+
- out.__imul__( self.sign_x )
+
+
+