diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-08-22 21:10:02 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-08-22 21:10:02 +0100 |
commit | da5901a9fa132091eef500e73eeb9197ff2a3f05 (patch) | |
tree | bab9ef714140807d3e7766fad9fc2a4b59b71d28 | |
parent | c369a2950801fca4db606f67433b7bebc32fbdf1 (diff) | |
download | framework-da5901a9fa132091eef500e73eeb9197ff2a3f05.tar.gz framework-da5901a9fa132091eef500e73eeb9197ff2a3f05.tar.bz2 framework-da5901a9fa132091eef500e73eeb9197ff2a3f05.tar.xz framework-da5901a9fa132091eef500e73eeb9197ff2a3f05.zip |
script to reconstruct multi-channel imat data updated
-rw-r--r-- | Wrappers/Python/wip/demo_imat_multichan_RGLTK.py | 278 |
1 files changed, 115 insertions, 163 deletions
diff --git a/Wrappers/Python/wip/demo_imat_multichan_RGLTK.py b/Wrappers/Python/wip/demo_imat_multichan_RGLTK.py index dae5f3a..148aef8 100644 --- a/Wrappers/Python/wip/demo_imat_multichan_RGLTK.py +++ b/Wrappers/Python/wip/demo_imat_multichan_RGLTK.py @@ -1,8 +1,7 @@ # This script demonstrates how to load IMAT fits data # into the CIL optimisation framework and run reconstruction methods. # -# This demo loads the summedImg files which are the non-spectral images -# resulting from summing projections over all spectral channels. +# Demo to reconstruct energy-discretized channels of IMAT data # needs dxchange: conda install -c conda-forge dxchange # needs astropy: conda install astropy @@ -10,189 +9,142 @@ # All third-party imports. import numpy as np -from scipy.io import loadmat import matplotlib.pyplot as plt from dxchange.reader import read_fits +from astropy.io import fits # All own imports. -from ccpi.framework import AcquisitionData, AcquisitionGeometry, ImageGeometry, ImageData +from ccpi.framework import AcquisitionData, AcquisitionGeometry, ImageGeometry, ImageData, DataContainer from ccpi.astra.ops import AstraProjectorSimple, AstraProjector3DSimple from ccpi.optimisation.algs import CGLS, FISTA from ccpi.optimisation.funcs import Norm2sq, Norm1 -from ccpi.plugins.regularisers import ROF_TV, FGP_TV, SB_TV - - -pathname0 = '/media/algol/HD-LXU3/DATA_DANIIL/PSI_DATA/DATA/Sample/angle0/' -filenameG = "IMAT00004675_Tomo_test_000_" +from ccpi.plugins.regularisers import FGP_TV +# set main parameters here n = 512 totalAngles = 250 # total number of projection angles # spectral discretization parameter -num_average = 120 -numChannels = 2970 -totChannels = round(numChannels/num_average) # total no. of averaged channels +num_average = 145 # channel discretization frequency (total number of averaged channels) +numChannels = 2970 # 2970 +totChannels = round(numChannels/num_average) # the resulting number of channels Projections_stack = np.zeros((num_average,n,n),dtype='uint16') ProjAngleChannels = np.zeros((totalAngles,totChannels,n,n),dtype='float32') -counterT = 0 -for i in range(0,2,1): - for j in range(0,num_average,1): - if counterT < 10: - outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathname0,filenameG,'0000',str(counterT)) - if ((counterT >= 10) & (counterT < 100)): - outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathname0,filenameG,'000',str(counterT)) - if ((counterT >= 100) & (counterT < 1000)): - outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathname0,filenameG,'00',str(counterT)) - if ((counterT >= 1000) & (counterT < 10000)): - outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathname0,filenameG,'0',str(counterT)) - Projections_stack[j,:,:] = read_fits(outfile) - counterT = counterT + 1 - AverageProj=np.mean(Projections_stack,axis=0) # averaged projection -ProjAngleChannels[0,i,:,:] = AverageProj - - -filename0 = 'IMAT00004675_Tomo_test_000_SummedImg.fits' - -data0 = read_fits(pathname0 + filename0) - -pathname10 = '/media/algol/HD-LXU3/DATA_DANIIL/PSI_DATA/DATA/Sample/angle10/' -filename10 = 'IMAT00004685_Tomo_test_000_SummedImg.fits' - -data10 = read_fits(pathname10 + filename10) - -# Load a flat field (more are available, should we average over them?) -flat1 = read_fits('/media/algol/HD-LXU3/DATA_DANIIL/PSI_DATA/DATA/OpenBeam_aft1/IMAT00004932_Tomo_test_000_SummedImg.fits') - -# Apply flat field and display after flat-field correction and negative log -data0_rel = np.zeros(np.shape(flat1), dtype = float) +######################################################################### +print ("Loading the data...") +MainPath = '/media/algol/HD-LXU3/DATA_DANIIL/' # path to data +pathname0 = '{!s}{!s}'.format(MainPath,'PSI_DATA/DATA/Sample/') +counterFileName = 4675 +# A main loop over all available angles +for ll in range(0,totalAngles,1): + pathnameData = '{!s}{!s}{!s}/'.format(pathname0,'angle',str(ll)) + filenameCurr = '{!s}{!s}{!s}'.format('IMAT0000',str(counterFileName),'_Tomo_test_000_') + counterT = 0 + # loop over reduced channels (discretized) + for i in range(0,totChannels,1): + sumCount = 0 + # loop over actual channels to obtain averaged one + for j in range(0,num_average,1): + if counterT < 10: + outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathnameData,filenameCurr,'0000',str(counterT)) + if ((counterT >= 10) & (counterT < 100)): + outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathnameData,filenameCurr,'000',str(counterT)) + if ((counterT >= 100) & (counterT < 1000)): + outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathnameData,filenameCurr,'00',str(counterT)) + if ((counterT >= 1000) & (counterT < 10000)): + outfile = '{!s}{!s}{!s}{!s}.fits'.format(pathnameData,filenameCurr,'0',str(counterT)) + try: + Projections_stack[j,:,:] = read_fits(outfile) + except: + print("Fits is corrupted, skipping no.", counterT) + sumCount -= 1 + counterT += 1 + sumCount += 1 + AverageProj=np.sum(Projections_stack,axis=0)/sumCount # averaged projection over "num_average" channels + ProjAngleChannels[ll,i,:,:] = AverageProj + print("Angle is processed", ll) + counterFileName += 1 +######################################################################### + +flat1 = read_fits('{!s}{!s}{!s}'.format(MainPath,'PSI_DATA/DATA/','OpenBeam_aft1/IMAT00004932_Tomo_test_000_SummedImg.fits')) nonzero = flat1 > 0 -data0_rel[nonzero] = data0[nonzero] / flat1[nonzero] -data10_rel = np.zeros(np.shape(flat1), dtype = float) -data10_rel[nonzero] = data10[nonzero] / flat1[nonzero] - -plt.figure() -plt.imshow(data0_rel) -plt.colorbar() -plt.show() - -plt.figure() -plt.imshow(-np.log(data0_rel)) -plt.colorbar() -plt.show() - -plt.figure() -plt.imshow(data10_rel) -plt.colorbar() -plt.show() - -plt.figure() -plt.imshow(-np.log(data10_rel)) -plt.colorbar() -plt.show() - -# Set up for loading all summed images at 250 angles. -pathname = '/media/algol/HD-LXU3/DATA_DANIIL/PSI_DATA/DATA/Sample/angle{}/' -filename = 'IMAT0000{}_Tomo_test_000_SummedImg.fits' - -# Dimensions -num_angles = 250 -imsize = 512 - -# Initialise array -data = np.zeros((num_angles,imsize,imsize)) - -# Load only 0-249, as 250 is at repetition of zero degrees just like image 0 -for i in range(0,250): - curimfile = (pathname + filename).format(i, i+4675) - data[i,:,:] = read_fits(curimfile) - # Apply flat field and take negative log -nonzero = flat1 > 0 -for i in range(0,250): - data[i,nonzero] = data[i,nonzero]/flat1[nonzero] - -eqzero = data == 0 -data[eqzero] = 1 +for ll in range(0,totalAngles,1): + for i in range(0,totChannels,1): + ProjAngleChannels[ll,i,nonzero] = ProjAngleChannels[ll,i,nonzero]/flat1[nonzero] -data_rel = -np.log(data) - -# Permute order to get: angles, vertical, horizontal, as default in framework. -data_rel = np.transpose(data_rel,(0,2,1)) +eqzero = ProjAngleChannels == 0 +ProjAngleChannels[eqzero] = 1 +ProjAngleChannels_NormLog = -np.log(ProjAngleChannels) # normalised and neg-log data +# extact sinogram over energy channels +selectedVertical_slice = 256 +sino_all_channels = ProjAngleChannels_NormLog[:,:,:,selectedVertical_slice] # Set angles to use -angles = np.linspace(-np.pi,np.pi,num_angles,endpoint=False) +angles = np.linspace(-np.pi,np.pi,totalAngles,endpoint=False) -# Create 3D acquisition geometry and acquisition data +# set the geometry +ig = ImageGeometry(n,n) ag = AcquisitionGeometry('parallel', - '3D', - angles, - pixel_num_h=imsize, - pixel_num_v=imsize) -b = AcquisitionData(data_rel, geometry=ag) - -# Reduce to single (noncentral) slice by extracting relevant parameters from data and its -# geometry. Perhaps create function to extract central slice automatically? -b2d = b.subset(vertical=128) -ag2d = AcquisitionGeometry('parallel', - '2D', - ag.angles, - pixel_num_h=ag.pixel_num_h) -b2d.geometry = ag2d - -# Create 2D image geometry -ig2d = ImageGeometry(voxel_num_x=ag2d.pixel_num_h, - voxel_num_y=ag2d.pixel_num_h) - -# Create GPU projector/backprojector operator with ASTRA. -Aop = AstraProjectorSimple(ig2d,ag2d,'gpu') - -# Demonstrate operator is working by applying simple backprojection. -z = Aop.adjoint(b2d) -plt.figure() -plt.imshow(z.array) -plt.title('Simple backprojection') -plt.colorbar() -plt.show() - -# Set initial guess ImageData with zeros for algorithms, and algorithm options. -x_init = ImageData(np.zeros((imsize,imsize)), - geometry=ig2d) -opt_CGLS = {'tol': 1e-4, 'iter': 20} - -# Run CGLS algorithm and display reconstruction. -x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, b2d, opt_CGLS) -plt.figure() -plt.imshow(x_CGLS.array) -plt.title('CGLS') -plt.colorbar() -plt.show() - -plt.figure() -plt.semilogy(criter_CGLS) -plt.title('CGLS Criterion vs iterations') -plt.show() - - -f = Norm2sq(Aop,b2d,c=0.5) - -opt = {'tol': 1e-4, 'iter': 50} - -lamtv = 1.0 -# Repeat for FGP variant. -g_fgp = FGP_TV(lambdaReg = lamtv, + '2D', + angles, + n,1) +Aop = AstraProjectorSimple(ig, ag, 'gpu') + + +# loop to reconstruct energy channels +REC_chan = np.zeros((totChannels, n, n), 'float32') +for i in range(0,totChannels,1): + sino_channel = sino_all_channels[:,i,:] # extract a sinogram for i-th channel + + print ("Initial guess") + x_init = ImageData(geometry=ig) + + # Create least squares object instance with projector and data. + print ("Create least squares object instance with projector and data.") + f = Norm2sq(Aop,DataContainer(sino_channel),c=0.5) + + print ("Run FISTA-TV for least squares") + lamtv = 10 + opt = {'tol': 1e-4, 'iter': 200} + g_fgp = FGP_TV(lambdaReg = lamtv, iterationsTV=50, - tolerance=1e-5, + tolerance=1e-6, methodTV=0, nonnegativity=0, printing=0, - device='cpu') - -x_fista_fgp, it1, timing1, criter_fgp = FISTA(x_init, f, g_fgp,opt) - -plt.figure() -plt.subplot(121) -plt.imshow(x_fista_fgp.array) -plt.title('FISTA FGP TV') -plt.subplot(122) -plt.semilogy(criter_fgp) -plt.show() + device='gpu') + + x_fista_fgp, it1, timing1, criter_fgp = FISTA(x_init, f, g_fgp, opt) + REC_chan[i,:,:] = x_fista_fgp.array + """ + plt.figure() + plt.subplot(121) + plt.imshow(x_fista_fgp.array, vmin=0, vmax=0.05) + plt.title('FISTA FGP TV') + plt.subplot(122) + plt.semilogy(criter_fgp) + plt.show() + """ + """ + print ("Run CGLS for least squares") + opt = {'tol': 1e-4, 'iter': 20} + x_init = ImageData(geometry=ig) + x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, DataContainer(sino_channel), opt=opt) + + plt.figure() + plt.imshow(x_CGLS.array,vmin=0, vmax=0.05) + plt.title('CGLS') + plt.show() + """ +# Saving images into fits using astrapy if required +add_val = np.min(REC_chan[:]) +REC_chan += abs(add_val) +REC_chan = REC_chan/np.max(REC_chan[:])*65535 +counter = 0 +filename = 'FISTA_TV_imat_slice' +for i in range(totChannels): + outfile = '{!s}_{!s}_{!s}.fits'.format(filename,str(selectedVertical_slice),str(counter)) + hdu = fits.PrimaryHDU(np.uint16(REC_chan[i,:,:])) + hdu.writeto(outfile, overwrite=True) + counter += 1
\ No newline at end of file |