diff options
author | epapoutsellis <epapoutsellis@gmail.com> | 2019-04-29 16:37:10 +0100 |
---|---|---|
committer | epapoutsellis <epapoutsellis@gmail.com> | 2019-04-29 16:37:10 +0100 |
commit | 58c3977744d09a4a8f72125902470098a10a75b4 (patch) | |
tree | 25388ad1fefa62ff4d19dcd39d2b001049f7bc40 | |
parent | 892002e03206a422a4ea89863939ee806be20c24 (diff) | |
download | framework-58c3977744d09a4a8f72125902470098a10a75b4.tar.gz framework-58c3977744d09a4a8f72125902470098a10a75b4.tar.bz2 framework-58c3977744d09a4a8f72125902470098a10a75b4.tar.xz framework-58c3977744d09a4a8f72125902470098a10a75b4.zip |
check demos
-rw-r--r-- | Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Gaussian.py | 6 | ||||
-rw-r--r-- | Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Poisson.py | 122 |
2 files changed, 64 insertions, 64 deletions
diff --git a/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Gaussian.py b/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Gaussian.py index 1a3e0df..39bbb2c 100644 --- a/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Gaussian.py +++ b/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Gaussian.py @@ -32,7 +32,7 @@ from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \ from skimage.util import random_noise # Create phantom for TV Gaussian denoising -N = 300 +N = 100 data = np.zeros((N,N)) data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 @@ -46,9 +46,9 @@ n1 = random_noise(data.as_array(), mode = 'gaussian', mean=0, var = 0.05, seed=1 noisy_data = ImageData(n1) # Regularisation Parameter -alpha = 0.5 +alpha = 2 -method = '0' +method = '1' if method == '0': diff --git a/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Poisson.py b/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Poisson.py index a54e5ee..4903c44 100644 --- a/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Poisson.py +++ b/Wrappers/Python/wip/Demos/PDHG_TV_Denoising_Poisson.py @@ -48,7 +48,7 @@ noisy_data = ImageData(n1) # Regularisation Parameter alpha = 2 -method = '0' +method = '1' if method == '0': @@ -124,63 +124,63 @@ plt.show() #%% Check with CVX solution -#from ccpi.optimisation.operators import SparseFiniteDiff -# -#try: -# from cvxpy import * -# cvx_not_installable = True -#except ImportError: -# cvx_not_installable = False -# -# -#if cvx_not_installable: -# -# ##Construct problem -# u1 = Variable(ig.shape) -# q = Variable() -# -# DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann') -# DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann') -# -# # Define Total Variation as a regulariser -# regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u1), DY.matrix() * vec(u1)]), 2, axis = 0)) -# -# fidelity = sum( u1 - multiply(noisy_data.as_array(), log(u1)) ) -# constraints = [q>= fidelity, u1>=0] -# -# solver = ECOS -# obj = Minimize( regulariser + q) -# prob = Problem(obj, constraints) -# result = prob.solve(verbose = True, solver = solver) -# -# -# diff_cvx = numpy.abs( pdhg.get_output().as_array() - u1.value ) -# -# plt.figure(figsize=(15,15)) -# plt.subplot(3,1,1) -# plt.imshow(pdhg.get_output().as_array()) -# plt.title('PDHG solution') -# plt.colorbar() -# plt.subplot(3,1,2) -# plt.imshow(u1.value) -# plt.title('CVX solution') -# plt.colorbar() -# plt.subplot(3,1,3) -# plt.imshow(diff_cvx) -# plt.title('Difference') -# plt.colorbar() -# plt.show() -# -# plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG') -# plt.plot(np.linspace(0,N,N), u1.value[int(N/2),:], label = 'CVX') -# plt.legend() -# plt.title('Middle Line Profiles') -# plt.show() -# -# print('Primal Objective (CVX) {} '.format(obj.value)) -# print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) -# -# -# -# -# +from ccpi.optimisation.operators import SparseFiniteDiff + +try: + from cvxpy import * + cvx_not_installable = True +except ImportError: + cvx_not_installable = False + + +if cvx_not_installable: + + ##Construct problem + u1 = Variable(ig.shape) + q = Variable() + + DY = SparseFiniteDiff(ig, direction=0, bnd_cond='Neumann') + DX = SparseFiniteDiff(ig, direction=1, bnd_cond='Neumann') + + # Define Total Variation as a regulariser + regulariser = alpha * sum(norm(vstack([DX.matrix() * vec(u1), DY.matrix() * vec(u1)]), 2, axis = 0)) + + fidelity = sum( u1 - multiply(noisy_data.as_array(), log(u1)) ) + constraints = [q>= fidelity, u1>=0] + + solver = ECOS + obj = Minimize( regulariser + q) + prob = Problem(obj, constraints) + result = prob.solve(verbose = True, solver = solver) + + + diff_cvx = numpy.abs( pdhg.get_output().as_array() - u1.value ) + + plt.figure(figsize=(15,15)) + plt.subplot(3,1,1) + plt.imshow(pdhg.get_output().as_array()) + plt.title('PDHG solution') + plt.colorbar() + plt.subplot(3,1,2) + plt.imshow(u1.value) + plt.title('CVX solution') + plt.colorbar() + plt.subplot(3,1,3) + plt.imshow(diff_cvx) + plt.title('Difference') + plt.colorbar() + plt.show() + + plt.plot(np.linspace(0,N,N), pdhg.get_output().as_array()[int(N/2),:], label = 'PDHG') + plt.plot(np.linspace(0,N,N), u1.value[int(N/2),:], label = 'CVX') + plt.legend() + plt.title('Middle Line Profiles') + plt.show() + + print('Primal Objective (CVX) {} '.format(obj.value)) + print('Primal Objective (PDHG) {} '.format(pdhg.objective[-1][0])) + + + + + |