summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorepapoutsellis <epapoutsellis@gmail.com>2019-04-04 17:37:35 +0100
committerepapoutsellis <epapoutsellis@gmail.com>2019-04-04 17:37:35 +0100
commit3fbc6020ac3eecf228133d69bd7683b946cba9bf (patch)
tree4b1289b17913963ab0dda28cc13a80cc99477a8f
parent2ee7afd4cb57a51071ba454e79880e78ce24c03b (diff)
downloadframework-3fbc6020ac3eecf228133d69bd7683b946cba9bf.tar.gz
framework-3fbc6020ac3eecf228133d69bd7683b946cba9bf.tar.bz2
framework-3fbc6020ac3eecf228133d69bd7683b946cba9bf.tar.xz
framework-3fbc6020ac3eecf228133d69bd7683b946cba9bf.zip
add precond example
-rw-r--r--Wrappers/Python/wip/pdhg_TV_denoising_precond.py48
1 files changed, 33 insertions, 15 deletions
diff --git a/Wrappers/Python/wip/pdhg_TV_denoising_precond.py b/Wrappers/Python/wip/pdhg_TV_denoising_precond.py
index 518ead2..6792f43 100644
--- a/Wrappers/Python/wip/pdhg_TV_denoising_precond.py
+++ b/Wrappers/Python/wip/pdhg_TV_denoising_precond.py
@@ -24,7 +24,7 @@ from skimage.util import random_noise
# ############################################################################
# Create phantom for TV denoising
-N = 100
+N = 500
data = np.zeros((N,N))
data[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5
data[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1
@@ -74,34 +74,52 @@ else:
###########################################################################
#%%
-diag_precon = True
+diag_precon = False
if diag_precon:
- tmp_tau = operator.sum_abs_row()
- tmp_sigma = operator.sum_abs_col()
- tmp_sigma[0][0].as_array()[tmp_sigma[0][0].as_array()==0]=1
- tmp_sigma[0][1].as_array()[tmp_sigma[0][1].as_array()==0]=1
- tmp_sigma[1].as_array()[tmp_sigma[1].as_array()==0]=1
+ tmp_tau = 1/operator.sum_abs_row()
+ tmp_sigma = 1/operator.sum_abs_col()
- tau = 1/tmp_tau
- sigma = 1/tmp_sigma
+ tmp_sigma[0][0].as_array()[tmp_sigma[0][0].as_array()==np.inf]=0
+ tmp_sigma[0][1].as_array()[tmp_sigma[0][1].as_array()==np.inf]=0
+ tmp_sigma[1].as_array()[tmp_sigma[1].as_array()==np.inf]=0
+ tau = tmp_tau
+ sigma = tmp_sigma
+
else:
# Compute operator Norm
normK = operator.norm()
print ("normK", normK)
# Primal & dual stepsizes
- sigma = 1
- tau = 1/(sigma*normK**2)
+ sigma = 1/normK
+ tau = 1/normK
+# tau = 1/(sigma*normK**2)
#%%
-#opt = {'niter':2000}
+opt = {'niter':2000}
+#
+res = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)
+
+aaa = res[0].as_array()
+#
+plt.imshow(aaa)
+plt.colorbar()
+plt.show()
+#c2 = aaa
+#del aaa
+#%%
-#res = PDHG_old(f, g, operator, tau = tau, sigma = sigma, opt = opt)
-
-
+#c2 = aaa
+##%%
+#%%
+z = c1 - c2
+plt.imshow(np.abs(z[0:95,0:95]))
+plt.colorbar()
+
+#%%
#pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
#pdhg.max_iteration = 2000
#pdhg.update_objective_interval = 10