summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2018-01-09 16:23:07 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2018-01-09 16:23:07 +0000
commit2844f34f4eba1910017c683358ea755d2d007caa (patch)
treecf0d3ad0a3ba139770b2f5cbf126ad54ca6cacfc
parentd146e1429e3349b5788d2305742d238900f9e2be (diff)
downloadframework-2844f34f4eba1910017c683358ea755d2d007caa.tar.gz
framework-2844f34f4eba1910017c683358ea755d2d007caa.tar.bz2
framework-2844f34f4eba1910017c683358ea755d2d007caa.tar.xz
framework-2844f34f4eba1910017c683358ea755d2d007caa.zip
Working implementation of DataSet
Added slice with dimensions selection.
-rw-r--r--Wrappers/Python/ccpi/common.py79
1 files changed, 63 insertions, 16 deletions
diff --git a/Wrappers/Python/ccpi/common.py b/Wrappers/Python/ccpi/common.py
index 6450951..9d7780e 100644
--- a/Wrappers/Python/ccpi/common.py
+++ b/Wrappers/Python/ccpi/common.py
@@ -93,37 +93,77 @@ class DataSet(ABC):
self.array = array[:]
else:
self.array = array
-
+
def as_array(self, dimensions=None):
+ '''Returns the DataSet as Numpy Array
+
+ Returns the pointer to the array if dimensions is not set.
+ If dimensions is set, it first creates a new DataSet with the subset
+ and then it returns the pointer to the array'''
+ if dimensions is not None:
+ return self.subset(dimensions).as_array()
+ return self.array
+
+ def subset(self, dimensions=None):
+ '''Creates a DataSet containing a subset of self according to the
+ labels in dimensions'''
if dimensions is None:
return self.array
else:
# check that all the requested dimensions are in the array
# this is done by checking the dimension_labels
proceed = True
+ unknown_key = ''
+ # axis_order contains the order of the axis that the user wants
+ # in the output DataSet
axis_order = []
if type(dimensions) == list:
for dl in dimensions:
if dl not in self.dimension_labels.values():
proceed = False
+ unknown_key = dl
break
else:
axis_order.append(find_key(self.dimension_labels, dl))
- print (axis_order)
- # transpose the array and slice away the unwanted data
+ if not proceed:
+ raise KeyError('Unknown key specified {0}'.format(dl))
+
+ # slice away the unwanted data from the array
unwanted_dimensions = self.dimension_labels.copy()
- for ax in axis_order:
- unwanted_dimensions.pop(ax)
- new_shape = []
- #for i in range(axis_order):
- # new_shape.append(self.shape(axis_order[i]))
- new_shape = [self.shape[ax] for ax in axis_order]
- return numpy.reshape(
- numpy.delete( self.array , unwanted_dimensions.keys() ) ,
- new_shape
- )
- #return numpy.transpose(self.array, new_shape)
-
+ left_dimensions = []
+ for ax in sorted(axis_order):
+ this_dimension = unwanted_dimensions.pop(ax)
+ left_dimensions.append(this_dimension)
+ #print ("unwanted_dimensions {0}".format(unwanted_dimensions))
+ #print ("left_dimensions {0}".format(left_dimensions))
+ #new_shape = [self.shape[ax] for ax in axis_order]
+ #print ("new_shape {0}".format(new_shape))
+ command = "self.array"
+ for i in range(self.number_of_dimensions):
+ if self.dimension_labels[i] in unwanted_dimensions.values():
+ command = command + "[0]"
+ else:
+ command = command + "[:]"
+ #print ("command {0}".format(command))
+ cleaned = eval(command)
+ # cleaned has collapsed dimensions in the same order of
+ # self.array, but we want it in the order stated in the
+ # "dimensions".
+ # create axes order for numpy.transpose
+ axes = []
+ for key in dimensions:
+ #print ("key {0}".format( key))
+ for i in range(len( left_dimensions )):
+ ld = left_dimensions[i]
+ #print ("ld {0}".format( ld))
+ if ld == key:
+ axes.append(i)
+ #print ("axes {0}".format(axes))
+
+ cleaned = numpy.transpose(cleaned, axes).copy()
+
+ return DataSet(cleaned , True, dimensions)
+
@@ -136,7 +176,14 @@ if __name__ == '__main__':
a = numpy.asarray([i for i in range( size )])
a = numpy.reshape(a, shape)
ds = DataSet(a, False, ['X', 'Y','Z' ,'W'])
- b = ds.as_array(['Z' ,'W'])
+ print ("ds label {0}".format(ds.dimension_labels))
+ subset = ['W' ,'X']
+ b = ds.subset( subset )
+ print ("b label {0} shape {1}".format(b.dimension_labels,
+ numpy.shape(b.as_array())))
+ c = ds.as_array(['Z','W'])
+
+