summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorepapoutsellis <epapoutsellis@gmail.com>2019-05-14 10:17:19 +0100
committerepapoutsellis <epapoutsellis@gmail.com>2019-05-14 10:17:19 +0100
commit25778e72b53caf22082ba1a58198185a3c89cdb2 (patch)
tree334b2e798b7e1eda6532c2f74fff742a13712fd6
parent9edcc1d0b5cbefd29952827c2322ebebeb98a0ab (diff)
downloadframework-25778e72b53caf22082ba1a58198185a3c89cdb2.tar.gz
framework-25778e72b53caf22082ba1a58198185a3c89cdb2.tar.bz2
framework-25778e72b53caf22082ba1a58198185a3c89cdb2.tar.xz
framework-25778e72b53caf22082ba1a58198185a3c89cdb2.zip
delete demos move to PDHG ex dir
-rw-r--r--Wrappers/Python/demos/PDHG_Tikhonov_Tomo2D.py12
-rw-r--r--Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Tomo2D.py156
2 files changed, 162 insertions, 6 deletions
diff --git a/Wrappers/Python/demos/PDHG_Tikhonov_Tomo2D.py b/Wrappers/Python/demos/PDHG_Tikhonov_Tomo2D.py
index 22972da..02cd053 100644
--- a/Wrappers/Python/demos/PDHG_Tikhonov_Tomo2D.py
+++ b/Wrappers/Python/demos/PDHG_Tikhonov_Tomo2D.py
@@ -47,8 +47,8 @@ import matplotlib.pyplot as plt
from ccpi.optimisation.algorithms import PDHG
from ccpi.optimisation.operators import BlockOperator, Gradient
-from ccpi.optimisation.functions import IndicatorBox, L2NormSquared, BlockFunction
-from skimage.util import random_noise
+from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, BlockFunction
+
from ccpi.astra.ops import AstraProjectorSimple
from ccpi.framework import TestData
import os, sys
@@ -101,7 +101,7 @@ plt.show()
# Regularisation Parameter
-alpha = 500
+alpha = 1000
# Create operators
op1 = Gradient(ig)
@@ -115,8 +115,8 @@ operator = BlockOperator(op1, op2, shape=(2,1) )
f1 = alpha * L2NormSquared()
f2 = 0.5 * L2NormSquared(b=noisy_data)
f = BlockFunction(f1, f2)
-
-g = IndicatorBox(lower=0)
+
+g = ZeroFunction()
# Compute operator Norm
normK = operator.norm()
@@ -127,7 +127,7 @@ tau = 1/(sigma*normK**2)
# Setup and run the PDHG algorithm
-pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
pdhg.max_iteration = 2000
pdhg.update_objective_interval = 500
pdhg.run(2000)
diff --git a/Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Tomo2D.py b/Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Tomo2D.py
new file mode 100644
index 0000000..02cd053
--- /dev/null
+++ b/Wrappers/Python/demos/PDHG_examples/PDHG_Tikhonov_Tomo2D.py
@@ -0,0 +1,156 @@
+#========================================================================
+# Copyright 2019 Science Technology Facilities Council
+# Copyright 2019 University of Manchester
+#
+# This work is part of the Core Imaging Library developed by Science Technology
+# Facilities Council and University of Manchester
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0.txt
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+#=========================================================================
+
+"""
+
+Total Variation Denoising using PDHG algorithm:
+
+Problem: min_x, x>0 \alpha * ||\nabla x||_{2}^{2} + int A x -g log(Ax + \eta)
+
+ \nabla: Gradient operator
+
+ A: Projection Matrix
+ g: Noisy sinogram corrupted with Poisson Noise
+
+ \eta: Background Noise
+ \alpha: Regularization parameter
+
+
+
+"""
+
+
+from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, AcquisitionData
+
+import numpy as np
+import numpy
+import matplotlib.pyplot as plt
+
+from ccpi.optimisation.algorithms import PDHG
+
+from ccpi.optimisation.operators import BlockOperator, Gradient
+from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, BlockFunction
+
+from ccpi.astra.ops import AstraProjectorSimple
+from ccpi.framework import TestData
+import os, sys
+
+loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
+
+# Load Data
+N = 100
+M = 100
+data = loader.load(TestData.SIMPLE_PHANTOM_2D, size=(N,M), scale=(0,1))
+
+ig = data.geometry
+ag = ig
+
+#Create Acquisition Data and apply poisson noise
+
+detectors = N
+angles = np.linspace(0, np.pi, N)
+
+ag = AcquisitionGeometry('parallel','2D',angles, detectors)
+
+device = input('Available device: GPU==1 / CPU==0 ')
+
+if device=='1':
+ dev = 'gpu'
+else:
+ dev = 'cpu'
+
+Aop = AstraProjectorSimple(ig, ag, 'cpu')
+sin = Aop.direct(data)
+
+# Create noisy data. Apply Poisson noise
+scale = 0.5
+eta = 0
+n1 = scale * np.random.poisson(eta + sin.as_array()/scale)
+
+noisy_data = AcquisitionData(n1, ag)
+
+# Show Ground Truth and Noisy Data
+plt.figure(figsize=(10,10))
+plt.subplot(2,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(2,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.show()
+
+
+# Regularisation Parameter
+alpha = 1000
+
+# Create operators
+op1 = Gradient(ig)
+op2 = Aop
+
+# Create BlockOperator
+operator = BlockOperator(op1, op2, shape=(2,1) )
+
+# Create functions
+
+f1 = alpha * L2NormSquared()
+f2 = 0.5 * L2NormSquared(b=noisy_data)
+f = BlockFunction(f1, f2)
+
+g = ZeroFunction()
+
+# Compute operator Norm
+normK = operator.norm()
+
+# Primal & dual stepsizes
+sigma = 1
+tau = 1/(sigma*normK**2)
+
+
+# Setup and run the PDHG algorithm
+pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma)
+pdhg.max_iteration = 2000
+pdhg.update_objective_interval = 500
+pdhg.run(2000)
+
+plt.figure(figsize=(15,15))
+plt.subplot(3,1,1)
+plt.imshow(data.as_array())
+plt.title('Ground Truth')
+plt.colorbar()
+plt.subplot(3,1,2)
+plt.imshow(noisy_data.as_array())
+plt.title('Noisy Data')
+plt.colorbar()
+plt.subplot(3,1,3)
+plt.imshow(pdhg.get_output().as_array())
+plt.title('Tikhonov Reconstruction')
+plt.colorbar()
+plt.show()
+##
+plt.plot(np.linspace(0,N,M), data.as_array()[int(N/2),:], label = 'GTruth')
+plt.plot(np.linspace(0,N,M), pdhg.get_output().as_array()[int(N/2),:], label = 'Tikhonov reconstruction')
+plt.legend()
+plt.title('Middle Line Profiles')
+plt.show()
+
+