diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2018-03-14 14:57:16 +0000 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2018-03-14 14:57:16 +0000 |
commit | 12d2fc998e1b99846e5967414eab0f6ce51065c9 (patch) | |
tree | 187d848a40a3d0af7f89089d2fa256015d07311d | |
parent | 6eeb3f607eee57547182d24f2a7d4bce3fc47c24 (diff) | |
parent | f6ea543d826dc223be79d037ab000ee17c0e7b9b (diff) | |
download | framework-12d2fc998e1b99846e5967414eab0f6ce51065c9.tar.gz framework-12d2fc998e1b99846e5967414eab0f6ce51065c9.tar.bz2 framework-12d2fc998e1b99846e5967414eab0f6ce51065c9.tar.xz framework-12d2fc998e1b99846e5967414eab0f6ce51065c9.zip |
Merge remote-tracking branch 'origin' into rename_as_ccppetmr
-rwxr-xr-x | Wrappers/Python/ccpi/processors.py | 938 | ||||
-rw-r--r-- | Wrappers/Python/wip/simple_demo.py | 46 | ||||
-rw-r--r-- | Wrappers/Python/wip/simple_demo_tv.py | 99 |
3 files changed, 505 insertions, 578 deletions
diff --git a/Wrappers/Python/ccpi/processors.py b/Wrappers/Python/ccpi/processors.py index 9138a27..87acf92 100755 --- a/Wrappers/Python/ccpi/processors.py +++ b/Wrappers/Python/ccpi/processors.py @@ -1,470 +1,470 @@ -# -*- coding: utf-8 -*- -# This work is part of the Core Imaging Library developed by -# Visual Analytics and Imaging System Group of the Science Technology -# Facilities Council, STFC - -# Copyright 2018 Edoardo Pasca - -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at - -# http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License - -from ccpi.framework import DataSetProcessor, DataSet, VolumeData, SinogramData, ImageGeometry, AcquisitionGeometry -import numpy -import h5py -from scipy import ndimage - -class Normalizer(DataSetProcessor): - '''Normalization based on flat and dark - - This processor read in a SinogramDataSet and normalises it based on - the instrument reading with and without incident photons or neutrons. - - Input: SinogramDataSet - Parameter: 2D projection with flat field (or stack) - 2D projection with dark field (or stack) - Output: SinogramDataSetn - ''' - - def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5): - kwargs = { - 'flat_field' : None, - 'dark_field' : None, - # very small number. Used when there is a division by zero - 'tolerance' : tolerance - } - - #DataSetProcessor.__init__(self, **kwargs) - super(Normalizer, self).__init__(**kwargs) - if not flat_field is None: - self.setFlatField(flat_field) - if not dark_field is None: - self.setDarkField(dark_field) - - def checkInput(self, dataset): - if dataset.number_of_dimensions == 3: - return True - else: - raise ValueError("Expected input dimensions is 2 or 3, got {0}"\ - .format(dataset.number_of_dimensions)) - - def setDarkField(self, df): - if type(df) is numpy.ndarray: - if len(numpy.shape(df)) == 3: - raise ValueError('Dark Field should be 2D') - elif len(numpy.shape(df)) == 2: - self.dark_field = df - elif issubclass(type(df), DataSet): - self.dark_field = self.setDarkField(df.as_array()) - - def setFlatField(self, df): - if type(df) is numpy.ndarray: - if len(numpy.shape(df)) == 3: - raise ValueError('Flat Field should be 2D') - elif len(numpy.shape(df)) == 2: - self.flat_field = df - elif issubclass(type(df), DataSet): - self.flat_field = self.setDarkField(df.as_array()) - - @staticmethod - def normalizeProjection(projection, flat, dark, tolerance): - a = (projection - dark) - b = (flat-dark) - with numpy.errstate(divide='ignore', invalid='ignore'): - c = numpy.true_divide( a, b ) - c[ ~ numpy.isfinite( c )] = tolerance # set to not zero if 0/0 - return c - - def process(self): - - projections = self.getInput() - dark = self.dark_field - flat = self.flat_field - - if not (projections.shape[1:] == dark.shape and \ - projections.shape[1:] == flat.shape): - raise ValueError('Flats/Dark and projections size do not match.') - - - a = numpy.asarray( - [ Normalizer.normalizeProjection( - projection, flat, dark, self.tolerance) \ - for projection in projections.as_array() ] - ) - y = type(projections)( a , True, - dimension_labels=projections.dimension_labels, - geometry=projections.geometry) - return y - - -class CenterOfRotationFinder(DataSetProcessor): - '''Processor to find the center of rotation in a parallel beam experiment - - This processor read in a SinogramDataSet and finds the center of rotation - based on Nghia Vo's method. https://doi.org/10.1364/OE.22.019078 - - Input: SinogramDataSet - - Output: float. center of rotation in pixel coordinate - ''' - - def __init__(self): - kwargs = { - - } - - #DataSetProcessor.__init__(self, **kwargs) - super(CenterOfRotationFinder, self).__init__(**kwargs) - - def checkInput(self, dataset): - if dataset.number_of_dimensions == 3: - if dataset.geometry.geom_type == 'parallel': - return True - else: - raise ValueError('This algorithm is suitable only for parallel beam geometry') - else: - raise ValueError("Expected input dimensions is 3, got {0}"\ - .format(dataset.number_of_dimensions)) - - - # ######################################################################### - # Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved. # - # # - # Copyright 2015. UChicago Argonne, LLC. This software was produced # - # under U.S. Government contract DE-AC02-06CH11357 for Argonne National # - # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the # - # U.S. Department of Energy. The U.S. Government has rights to use, # - # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR # - # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR # - # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is # - # modified to produce derivative works, such modified software should # - # be clearly marked, so as not to confuse it with the version available # - # from ANL. # - # # - # Additionally, redistribution and use in source and binary forms, with # - # or without modification, are permitted provided that the following # - # conditions are met: # - # # - # * Redistributions of source code must retain the above copyright # - # notice, this list of conditions and the following disclaimer. # - # # - # * Redistributions in binary form must reproduce the above copyright # - # notice, this list of conditions and the following disclaimer in # - # the documentation and/or other materials provided with the # - # distribution. # - # # - # * Neither the name of UChicago Argonne, LLC, Argonne National # - # Laboratory, ANL, the U.S. Government, nor the names of its # - # contributors may be used to endorse or promote products derived # - # from this software without specific prior written permission. # - # # - # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS # - # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # - # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # - # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago # - # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # - # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # - # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # - # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # - # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # - # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # - # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # - # POSSIBILITY OF SUCH DAMAGE. # - # ######################################################################### - - @staticmethod - def as_ndarray(arr, dtype=None, copy=False): - if not isinstance(arr, numpy.ndarray): - arr = numpy.array(arr, dtype=dtype, copy=copy) - return arr - - @staticmethod - def as_dtype(arr, dtype, copy=False): - if not arr.dtype == dtype: - arr = numpy.array(arr, dtype=dtype, copy=copy) - return arr - - @staticmethod - def as_float32(arr): - arr = CenterOfRotationFinder.as_ndarray(arr, numpy.float32) - return CenterOfRotationFinder.as_dtype(arr, numpy.float32) - - - - - @staticmethod - def find_center_vo(tomo, ind=None, smin=-40, smax=40, srad=10, step=0.5, - ratio=2., drop=20): - """ - Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`. - - Parameters - ---------- - tomo : ndarray - 3D tomographic data. - ind : int, optional - Index of the slice to be used for reconstruction. - smin, smax : int, optional - Reference to the horizontal center of the sinogram. - srad : float, optional - Fine search radius. - step : float, optional - Step of fine searching. - ratio : float, optional - The ratio between the FOV of the camera and the size of object. - It's used to generate the mask. - drop : int, optional - Drop lines around vertical center of the mask. - - Returns - ------- - float - Rotation axis location. - - Notes - ----- - The function may not yield a correct estimate, if: - - - the sample size is bigger than the field of view of the camera. - In this case the ``ratio`` argument need to be set larger - than the default of 2.0. - - - there is distortion in the imaging hardware. If there's - no correction applied, the center of the projection image may - yield a better estimate. - - - the sample contrast is weak. Paganin's filter need to be applied - to overcome this. - - - the sample was changed during the scan. - """ - tomo = CenterOfRotationFinder.as_float32(tomo) - - if ind is None: - ind = tomo.shape[1] // 2 - _tomo = tomo[:, ind, :] - - - - # Reduce noise by smooth filters. Use different filters for coarse and fine search - _tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1)) - _tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2)) - - # Coarse and fine searches for finding the rotation center. - if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k) - #_tomo_coarse = downsample(numpy.expand_dims(_tomo_cs,1), level=2)[:, 0, :] - #init_cen = _search_coarse(_tomo_coarse, smin, smax, ratio, drop) - #fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop) - init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, smin, - smax, ratio, drop) - fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad, - step, init_cen, - ratio, drop) - else: - init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, - smin, smax, - ratio, drop) - fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad, - step, init_cen, - ratio, drop) - - #logger.debug('Rotation center search finished: %i', fine_cen) - return fine_cen - - - @staticmethod - def _search_coarse(sino, smin, smax, ratio, drop): - """ - Coarse search for finding the rotation center. - """ - (Nrow, Ncol) = sino.shape - centerfliplr = (Ncol - 1.0) / 2.0 - - # Copy the sinogram and flip left right, the purpose is to - # make a full [0;2Pi] sinogram - _copy_sino = numpy.fliplr(sino[1:]) - - # This image is used for compensating the shift of sinogram 2 - temp_img = numpy.zeros((Nrow - 1, Ncol), dtype='float32') - temp_img[:] = sino[-1] - - # Start coarse search in which the shift step is 1 - listshift = numpy.arange(smin, smax + 1) - listmetric = numpy.zeros(len(listshift), dtype='float32') - mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol, - 0.5 * ratio * Ncol, drop) - for i in listshift: - _sino = numpy.roll(_copy_sino, i, axis=1) - if i >= 0: - _sino[:, 0:i] = temp_img[:, 0:i] - else: - _sino[:, i:] = temp_img[:, i:] - listmetric[i - smin] = numpy.sum(numpy.abs(numpy.fft.fftshift( - #pyfftw.interfaces.numpy_fft.fft2( - # numpy.vstack((sino, _sino))) - numpy.fft.fft2(numpy.vstack((sino, _sino))) - )) * mask) - minpos = numpy.argmin(listmetric) - return centerfliplr + listshift[minpos] / 2.0 - - @staticmethod - def _search_fine(sino, srad, step, init_cen, ratio, drop): - """ - Fine search for finding the rotation center. - """ - Nrow, Ncol = sino.shape - centerfliplr = (Ncol + 1.0) / 2.0 - 1.0 - # Use to shift the sinogram 2 to the raw CoR. - shiftsino = numpy.int16(2 * (init_cen - centerfliplr)) - _copy_sino = numpy.roll(numpy.fliplr(sino[1:]), shiftsino, axis=1) - if init_cen <= centerfliplr: - lefttake = numpy.int16(numpy.ceil(srad + 1)) - righttake = numpy.int16(numpy.floor(2 * init_cen - srad - 1)) - else: - lefttake = numpy.int16(numpy.ceil( - init_cen - (Ncol - 1 - init_cen) + srad + 1)) - righttake = numpy.int16(numpy.floor(Ncol - 1 - srad - 1)) - Ncol1 = righttake - lefttake + 1 - mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol1, - 0.5 * ratio * Ncol, drop) - numshift = numpy.int16((2 * srad) / step) + 1 - listshift = numpy.linspace(-srad, srad, num=numshift) - listmetric = numpy.zeros(len(listshift), dtype='float32') - factor1 = numpy.mean(sino[-1, lefttake:righttake]) - num1 = 0 - for i in listshift: - _sino = ndimage.interpolation.shift( - _copy_sino, (0, i), prefilter=False) - factor2 = numpy.mean(_sino[0,lefttake:righttake]) - _sino = _sino * factor1 / factor2 - sinojoin = numpy.vstack((sino, _sino)) - listmetric[num1] = numpy.sum(numpy.abs(numpy.fft.fftshift( - #pyfftw.interfaces.numpy_fft.fft2( - # sinojoin[:, lefttake:righttake + 1]) - numpy.fft.fft2(sinojoin[:, lefttake:righttake + 1]) - )) * mask) - num1 = num1 + 1 - minpos = numpy.argmin(listmetric) - return init_cen + listshift[minpos] / 2.0 - - @staticmethod - def _create_mask(nrow, ncol, radius, drop): - du = 1.0 / ncol - dv = (nrow - 1.0) / (nrow * 2.0 * numpy.pi) - centerrow = numpy.ceil(nrow / 2) - 1 - centercol = numpy.ceil(ncol / 2) - 1 - # added by Edoardo Pasca - centerrow = int(centerrow) - centercol = int(centercol) - mask = numpy.zeros((nrow, ncol), dtype='float32') - for i in range(nrow): - num1 = numpy.round(((i - centerrow) * dv / radius) / du) - (p1, p2) = numpy.int16(numpy.clip(numpy.sort( - (-num1 + centercol, num1 + centercol)), 0, ncol - 1)) - mask[i, p1:p2 + 1] = numpy.ones(p2 - p1 + 1, dtype='float32') - if drop < centerrow: - mask[centerrow - drop:centerrow + drop + 1, - :] = numpy.zeros((2 * drop + 1, ncol), dtype='float32') - mask[:,centercol-1:centercol+2] = numpy.zeros((nrow, 3), dtype='float32') - return mask - - def process(self): - - projections = self.getInput() - - cor = CenterOfRotationFinder.find_center_vo(projections.as_array()) - - return cor - -def loadNexus(filename): - '''Load a dataset stored in a NeXuS file (HDF5)''' - ########################################################################### - ## Load a dataset - nx = h5py.File(filename, "r") - - data = nx.get('entry1/tomo_entry/data/rotation_angle') - angles = numpy.zeros(data.shape) - data.read_direct(angles) - - data = nx.get('entry1/tomo_entry/data/data') - stack = numpy.zeros(data.shape) - data.read_direct(stack) - data = nx.get('entry1/tomo_entry/instrument/detector/image_key') - - itype = numpy.zeros(data.shape) - data.read_direct(itype) - # 2 is dark field - darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ] - dark = darks[0] - for i in range(1, len(darks)): - dark += darks[i] - dark = dark / len(darks) - #dark[0][0] = dark[0][1] - - # 1 is flat field - flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ] - flat = flats[0] - for i in range(1, len(flats)): - flat += flats[i] - flat = flat / len(flats) - #flat[0][0] = dark[0][1] - - - # 0 is projection data - proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ] - angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ] - angle_proj = numpy.asarray (angle_proj) - angle_proj = angle_proj.astype(numpy.float32) - - return angle_proj , numpy.asarray(proj) , dark, flat - - - -if __name__ == '__main__': - angles, proj, dark, flat = loadNexus('../../../data/24737_fd.nxs') - - parallelbeam = AcquisitionGeometry('parallel', '3D' , - angles=angles, - pixel_num_h=numpy.shape(proj)[2], - pixel_num_v=numpy.shape(proj)[1], - ) - sino = SinogramData( proj , geometry=parallelbeam) - - normalizer = Normalizer() - normalizer.setInput(sino) - normalizer.setFlatField(flat) - normalizer.setDarkField(dark) - norm = normalizer.getOutput() - print ("Processor min {0} max {1}".format(norm.as_array().min(), norm.as_array().max())) - - norm1 = numpy.asarray( - [Normalizer.normalizeProjection( p, flat, dark, 1e-5 ) - for p in proj] - ) - - print ("Numpy min {0} max {1}".format(norm1.min(), norm1.max())) - - cor_finder = CenterOfRotationFinder() - cor_finder.setInput(sino) - cor = cor_finder.getOutput() - print ("center of rotation {0} == 86.25?".format(cor)) - - conebeam = AcquisitionGeometry('cone', '3D' , - angles=angles, - pixel_num_h=numpy.shape(proj)[2], - pixel_num_v=numpy.shape(proj)[1], - ) - sino = SinogramData( proj , geometry=conebeam) - try: - cor_finder.setInput(sino) - cor = cor_finder.getOutput() - except ValueError as err: +# -*- coding: utf-8 -*-
+# This work is part of the Core Imaging Library developed by
+# Visual Analytics and Imaging System Group of the Science Technology
+# Facilities Council, STFC
+
+# Copyright 2018 Edoardo Pasca
+
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+
+# http://www.apache.org/licenses/LICENSE-2.0
+
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License
+
+from ccpi.framework import DataSetProcessor, DataSet, VolumeData, SinogramData, ImageGeometry, AcquisitionGeometry
+import numpy
+import h5py
+from scipy import ndimage
+
+class Normalizer(DataSetProcessor):
+ '''Normalization based on flat and dark
+
+ This processor read in a SinogramDataSet and normalises it based on
+ the instrument reading with and without incident photons or neutrons.
+
+ Input: SinogramDataSet
+ Parameter: 2D projection with flat field (or stack)
+ 2D projection with dark field (or stack)
+ Output: SinogramDataSetn
+ '''
+
+ def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5):
+ kwargs = {
+ 'flat_field' : None,
+ 'dark_field' : None,
+ # very small number. Used when there is a division by zero
+ 'tolerance' : tolerance
+ }
+
+ #DataSetProcessor.__init__(self, **kwargs)
+ super(Normalizer, self).__init__(**kwargs)
+ if not flat_field is None:
+ self.setFlatField(flat_field)
+ if not dark_field is None:
+ self.setDarkField(dark_field)
+
+ def checkInput(self, dataset):
+ if dataset.number_of_dimensions == 3:
+ return True
+ else:
+ raise ValueError("Expected input dimensions is 2 or 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+ def setDarkField(self, df):
+ if type(df) is numpy.ndarray:
+ if len(numpy.shape(df)) == 3:
+ raise ValueError('Dark Field should be 2D')
+ elif len(numpy.shape(df)) == 2:
+ self.dark_field = df
+ elif issubclass(type(df), DataSet):
+ self.dark_field = self.setDarkField(df.as_array())
+
+ def setFlatField(self, df):
+ if type(df) is numpy.ndarray:
+ if len(numpy.shape(df)) == 3:
+ raise ValueError('Flat Field should be 2D')
+ elif len(numpy.shape(df)) == 2:
+ self.flat_field = df
+ elif issubclass(type(df), DataSet):
+ self.flat_field = self.setDarkField(df.as_array())
+
+ @staticmethod
+ def normalizeProjection(projection, flat, dark, tolerance):
+ a = (projection - dark)
+ b = (flat-dark)
+ with numpy.errstate(divide='ignore', invalid='ignore'):
+ c = numpy.true_divide( a, b )
+ c[ ~ numpy.isfinite( c )] = tolerance # set to not zero if 0/0
+ return c
+
+ def process(self):
+
+ projections = self.getInput()
+ dark = self.dark_field
+ flat = self.flat_field
+
+ if not (projections.shape[1:] == dark.shape and \
+ projections.shape[1:] == flat.shape):
+ raise ValueError('Flats/Dark and projections size do not match.')
+
+
+ a = numpy.asarray(
+ [ Normalizer.normalizeProjection(
+ projection, flat, dark, self.tolerance) \
+ for projection in projections.as_array() ]
+ )
+ y = type(projections)( a , True,
+ dimension_labels=projections.dimension_labels,
+ geometry=projections.geometry)
+ return y
+
+
+class CenterOfRotationFinder(DataSetProcessor):
+ '''Processor to find the center of rotation in a parallel beam experiment
+
+ This processor read in a SinogramDataSet and finds the center of rotation
+ based on Nghia Vo's method. https://doi.org/10.1364/OE.22.019078
+
+ Input: SinogramDataSet
+
+ Output: float. center of rotation in pixel coordinate
+ '''
+
+ def __init__(self):
+ kwargs = {
+
+ }
+
+ #DataSetProcessor.__init__(self, **kwargs)
+ super(CenterOfRotationFinder, self).__init__(**kwargs)
+
+ def checkInput(self, dataset):
+ if dataset.number_of_dimensions == 3:
+ if dataset.geometry.geom_type == 'parallel':
+ return True
+ else:
+ raise ValueError('This algorithm is suitable only for parallel beam geometry')
+ else:
+ raise ValueError("Expected input dimensions is 3, got {0}"\
+ .format(dataset.number_of_dimensions))
+
+
+ # #########################################################################
+ # Copyright (c) 2015, UChicago Argonne, LLC. All rights reserved. #
+ # #
+ # Copyright 2015. UChicago Argonne, LLC. This software was produced #
+ # under U.S. Government contract DE-AC02-06CH11357 for Argonne National #
+ # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the #
+ # U.S. Department of Energy. The U.S. Government has rights to use, #
+ # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR #
+ # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR #
+ # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is #
+ # modified to produce derivative works, such modified software should #
+ # be clearly marked, so as not to confuse it with the version available #
+ # from ANL. #
+ # #
+ # Additionally, redistribution and use in source and binary forms, with #
+ # or without modification, are permitted provided that the following #
+ # conditions are met: #
+ # #
+ # * Redistributions of source code must retain the above copyright #
+ # notice, this list of conditions and the following disclaimer. #
+ # #
+ # * Redistributions in binary form must reproduce the above copyright #
+ # notice, this list of conditions and the following disclaimer in #
+ # the documentation and/or other materials provided with the #
+ # distribution. #
+ # #
+ # * Neither the name of UChicago Argonne, LLC, Argonne National #
+ # Laboratory, ANL, the U.S. Government, nor the names of its #
+ # contributors may be used to endorse or promote products derived #
+ # from this software without specific prior written permission. #
+ # #
+ # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS #
+ # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #
+ # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS #
+ # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago #
+ # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, #
+ # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, #
+ # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; #
+ # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #
+ # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT #
+ # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN #
+ # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE #
+ # POSSIBILITY OF SUCH DAMAGE. #
+ # #########################################################################
+
+ @staticmethod
+ def as_ndarray(arr, dtype=None, copy=False):
+ if not isinstance(arr, numpy.ndarray):
+ arr = numpy.array(arr, dtype=dtype, copy=copy)
+ return arr
+
+ @staticmethod
+ def as_dtype(arr, dtype, copy=False):
+ if not arr.dtype == dtype:
+ arr = numpy.array(arr, dtype=dtype, copy=copy)
+ return arr
+
+ @staticmethod
+ def as_float32(arr):
+ arr = CenterOfRotationFinder.as_ndarray(arr, numpy.float32)
+ return CenterOfRotationFinder.as_dtype(arr, numpy.float32)
+
+
+
+
+ @staticmethod
+ def find_center_vo(tomo, ind=None, smin=-40, smax=40, srad=10, step=0.5,
+ ratio=2., drop=20):
+ """
+ Find rotation axis location using Nghia Vo's method. :cite:`Vo:14`.
+
+ Parameters
+ ----------
+ tomo : ndarray
+ 3D tomographic data.
+ ind : int, optional
+ Index of the slice to be used for reconstruction.
+ smin, smax : int, optional
+ Reference to the horizontal center of the sinogram.
+ srad : float, optional
+ Fine search radius.
+ step : float, optional
+ Step of fine searching.
+ ratio : float, optional
+ The ratio between the FOV of the camera and the size of object.
+ It's used to generate the mask.
+ drop : int, optional
+ Drop lines around vertical center of the mask.
+
+ Returns
+ -------
+ float
+ Rotation axis location.
+
+ Notes
+ -----
+ The function may not yield a correct estimate, if:
+
+ - the sample size is bigger than the field of view of the camera.
+ In this case the ``ratio`` argument need to be set larger
+ than the default of 2.0.
+
+ - there is distortion in the imaging hardware. If there's
+ no correction applied, the center of the projection image may
+ yield a better estimate.
+
+ - the sample contrast is weak. Paganin's filter need to be applied
+ to overcome this.
+
+ - the sample was changed during the scan.
+ """
+ tomo = CenterOfRotationFinder.as_float32(tomo)
+
+ if ind is None:
+ ind = tomo.shape[1] // 2
+ _tomo = tomo[:, ind, :]
+
+
+
+ # Reduce noise by smooth filters. Use different filters for coarse and fine search
+ _tomo_cs = ndimage.filters.gaussian_filter(_tomo, (3, 1))
+ _tomo_fs = ndimage.filters.median_filter(_tomo, (2, 2))
+
+ # Coarse and fine searches for finding the rotation center.
+ if _tomo.shape[0] * _tomo.shape[1] > 4e6: # If data is large (>2kx2k)
+ #_tomo_coarse = downsample(numpy.expand_dims(_tomo_cs,1), level=2)[:, 0, :]
+ #init_cen = _search_coarse(_tomo_coarse, smin, smax, ratio, drop)
+ #fine_cen = _search_fine(_tomo_fs, srad, step, init_cen*4, ratio, drop)
+ init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs, smin,
+ smax, ratio, drop)
+ fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
+ step, init_cen,
+ ratio, drop)
+ else:
+ init_cen = CenterOfRotationFinder._search_coarse(_tomo_cs,
+ smin, smax,
+ ratio, drop)
+ fine_cen = CenterOfRotationFinder._search_fine(_tomo_fs, srad,
+ step, init_cen,
+ ratio, drop)
+
+ #logger.debug('Rotation center search finished: %i', fine_cen)
+ return fine_cen
+
+
+ @staticmethod
+ def _search_coarse(sino, smin, smax, ratio, drop):
+ """
+ Coarse search for finding the rotation center.
+ """
+ (Nrow, Ncol) = sino.shape
+ centerfliplr = (Ncol - 1.0) / 2.0
+
+ # Copy the sinogram and flip left right, the purpose is to
+ # make a full [0;2Pi] sinogram
+ _copy_sino = numpy.fliplr(sino[1:])
+
+ # This image is used for compensating the shift of sinogram 2
+ temp_img = numpy.zeros((Nrow - 1, Ncol), dtype='float32')
+ temp_img[:] = sino[-1]
+
+ # Start coarse search in which the shift step is 1
+ listshift = numpy.arange(smin, smax + 1)
+ listmetric = numpy.zeros(len(listshift), dtype='float32')
+ mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol,
+ 0.5 * ratio * Ncol, drop)
+ for i in listshift:
+ _sino = numpy.roll(_copy_sino, i, axis=1)
+ if i >= 0:
+ _sino[:, 0:i] = temp_img[:, 0:i]
+ else:
+ _sino[:, i:] = temp_img[:, i:]
+ listmetric[i - smin] = numpy.sum(numpy.abs(numpy.fft.fftshift(
+ #pyfftw.interfaces.numpy_fft.fft2(
+ # numpy.vstack((sino, _sino)))
+ numpy.fft.fft2(numpy.vstack((sino, _sino)))
+ )) * mask)
+ minpos = numpy.argmin(listmetric)
+ return centerfliplr + listshift[minpos] / 2.0
+
+ @staticmethod
+ def _search_fine(sino, srad, step, init_cen, ratio, drop):
+ """
+ Fine search for finding the rotation center.
+ """
+ Nrow, Ncol = sino.shape
+ centerfliplr = (Ncol + 1.0) / 2.0 - 1.0
+ # Use to shift the sinogram 2 to the raw CoR.
+ shiftsino = numpy.int16(2 * (init_cen - centerfliplr))
+ _copy_sino = numpy.roll(numpy.fliplr(sino[1:]), shiftsino, axis=1)
+ if init_cen <= centerfliplr:
+ lefttake = numpy.int16(numpy.ceil(srad + 1))
+ righttake = numpy.int16(numpy.floor(2 * init_cen - srad - 1))
+ else:
+ lefttake = numpy.int16(numpy.ceil(
+ init_cen - (Ncol - 1 - init_cen) + srad + 1))
+ righttake = numpy.int16(numpy.floor(Ncol - 1 - srad - 1))
+ Ncol1 = righttake - lefttake + 1
+ mask = CenterOfRotationFinder._create_mask(2 * Nrow - 1, Ncol1,
+ 0.5 * ratio * Ncol, drop)
+ numshift = numpy.int16((2 * srad) / step) + 1
+ listshift = numpy.linspace(-srad, srad, num=numshift)
+ listmetric = numpy.zeros(len(listshift), dtype='float32')
+ factor1 = numpy.mean(sino[-1, lefttake:righttake])
+ num1 = 0
+ for i in listshift:
+ _sino = ndimage.interpolation.shift(
+ _copy_sino, (0, i), prefilter=False)
+ factor2 = numpy.mean(_sino[0,lefttake:righttake])
+ _sino = _sino * factor1 / factor2
+ sinojoin = numpy.vstack((sino, _sino))
+ listmetric[num1] = numpy.sum(numpy.abs(numpy.fft.fftshift(
+ #pyfftw.interfaces.numpy_fft.fft2(
+ # sinojoin[:, lefttake:righttake + 1])
+ numpy.fft.fft2(sinojoin[:, lefttake:righttake + 1])
+ )) * mask)
+ num1 = num1 + 1
+ minpos = numpy.argmin(listmetric)
+ return init_cen + listshift[minpos] / 2.0
+
+ @staticmethod
+ def _create_mask(nrow, ncol, radius, drop):
+ du = 1.0 / ncol
+ dv = (nrow - 1.0) / (nrow * 2.0 * numpy.pi)
+ centerrow = numpy.ceil(nrow / 2) - 1
+ centercol = numpy.ceil(ncol / 2) - 1
+ # added by Edoardo Pasca
+ centerrow = int(centerrow)
+ centercol = int(centercol)
+ mask = numpy.zeros((nrow, ncol), dtype='float32')
+ for i in range(nrow):
+ num1 = numpy.round(((i - centerrow) * dv / radius) / du)
+ (p1, p2) = numpy.int16(numpy.clip(numpy.sort(
+ (-num1 + centercol, num1 + centercol)), 0, ncol - 1))
+ mask[i, p1:p2 + 1] = numpy.ones(p2 - p1 + 1, dtype='float32')
+ if drop < centerrow:
+ mask[centerrow - drop:centerrow + drop + 1,
+ :] = numpy.zeros((2 * drop + 1, ncol), dtype='float32')
+ mask[:,centercol-1:centercol+2] = numpy.zeros((nrow, 3), dtype='float32')
+ return mask
+
+ def process(self):
+
+ projections = self.getInput()
+
+ cor = CenterOfRotationFinder.find_center_vo(projections.as_array())
+
+ return cor
+
+def loadNexus(filename):
+ '''Load a dataset stored in a NeXuS file (HDF5)'''
+ ###########################################################################
+ ## Load a dataset
+ nx = h5py.File(filename, "r")
+
+ data = nx.get('entry1/tomo_entry/data/rotation_angle')
+ angles = numpy.zeros(data.shape)
+ data.read_direct(angles)
+
+ data = nx.get('entry1/tomo_entry/data/data')
+ stack = numpy.zeros(data.shape)
+ data.read_direct(stack)
+ data = nx.get('entry1/tomo_entry/instrument/detector/image_key')
+
+ itype = numpy.zeros(data.shape)
+ data.read_direct(itype)
+ # 2 is dark field
+ darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ]
+ dark = darks[0]
+ for i in range(1, len(darks)):
+ dark += darks[i]
+ dark = dark / len(darks)
+ #dark[0][0] = dark[0][1]
+
+ # 1 is flat field
+ flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ]
+ flat = flats[0]
+ for i in range(1, len(flats)):
+ flat += flats[i]
+ flat = flat / len(flats)
+ #flat[0][0] = dark[0][1]
+
+
+ # 0 is projection data
+ proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ]
+ angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ]
+ angle_proj = numpy.asarray (angle_proj)
+ angle_proj = angle_proj.astype(numpy.float32)
+
+ return angle_proj , numpy.asarray(proj) , dark, flat
+
+
+
+if __name__ == '__main__':
+ angles, proj, dark, flat = loadNexus('../../../data/24737_fd.nxs')
+
+ parallelbeam = AcquisitionGeometry('parallel', '3D' ,
+ angles=angles,
+ pixel_num_h=numpy.shape(proj)[2],
+ pixel_num_v=numpy.shape(proj)[1],
+ )
+ sino = SinogramData( proj , geometry=parallelbeam)
+
+ normalizer = Normalizer()
+ normalizer.setInput(sino)
+ normalizer.setFlatField(flat)
+ normalizer.setDarkField(dark)
+ norm = normalizer.getOutput()
+ print ("Processor min {0} max {1}".format(norm.as_array().min(), norm.as_array().max()))
+
+ norm1 = numpy.asarray(
+ [Normalizer.normalizeProjection( p, flat, dark, 1e-5 )
+ for p in proj]
+ )
+
+ print ("Numpy min {0} max {1}".format(norm1.min(), norm1.max()))
+
+ cor_finder = CenterOfRotationFinder()
+ cor_finder.setInput(sino)
+ cor = cor_finder.getOutput()
+ print ("center of rotation {0} == 86.25?".format(cor))
+
+ conebeam = AcquisitionGeometry('cone', '3D' ,
+ angles=angles,
+ pixel_num_h=numpy.shape(proj)[2],
+ pixel_num_v=numpy.shape(proj)[1],
+ )
+ sino = SinogramData( proj , geometry=conebeam)
+ try:
+ cor_finder.setInput(sino)
+ cor = cor_finder.getOutput()
+ except ValueError as err:
print (err)
\ No newline at end of file diff --git a/Wrappers/Python/wip/simple_demo.py b/Wrappers/Python/wip/simple_demo.py index 629d9b5..655b68d 100644 --- a/Wrappers/Python/wip/simple_demo.py +++ b/Wrappers/Python/wip/simple_demo.py @@ -95,7 +95,7 @@ g0 = Norm1(lam) x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0) plt.imshow(x_fista1.array) -plt.title('FISTA') +plt.title('FISTA1') plt.show() plt.semilogy(criter1) @@ -106,12 +106,25 @@ opt = {'tol': 1e-4, 'iter': 10000} x_fbpd1, it_fbpd1, timing_fbpd1, criter_fbpd1 = FBPD(x_init,None,f,g0,opt=opt) plt.imshow(x_fbpd1.array) -plt.title('FBPD') +plt.title('FBPD1') plt.show() plt.semilogy(criter_fbpd1) plt.show() +# Now FBPD for least squares plus TV +lamtv = 1 +gtv = TV2D(lamtv) + +x_fbpdtv, it_fbpdtv, timing_fbpdtv, criter_fbpdtv = FBPD(x_init,None,f,gtv,opt=opt) + +plt.imshow(x_fbpdtv.array) +plt.show() + +plt.semilogy(criter_fbpdtv) +plt.show() + + # Run CGLS, which should agree with the FISTA0 x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(Aop, b, 1000, x_init) @@ -126,6 +139,8 @@ plt.show() #%% + +clims = (-0.5,2.5) cols = 3 rows = 2 current = 1 @@ -133,35 +148,46 @@ fig = plt.figure() # projections row a=fig.add_subplot(rows,cols,current) a.set_title('phantom {0}'.format(np.shape(Phantom.as_array()))) +<<<<<<< HEAD imgplot = plt.imshow(Phantom.as_array()) +======= +imgplot = plt.imshow(Phantom.as_array(),vmin=clims[0],vmax=clims[1]) +>>>>>>> origin current = current + 1 a=fig.add_subplot(rows,cols,current) a.set_title('FISTA0') -imgplot = plt.imshow(x_fista0.as_array()) +imgplot = plt.imshow(x_fista0.as_array(),vmin=clims[0],vmax=clims[1]) current = current + 1 a=fig.add_subplot(rows,cols,current) a.set_title('FISTA1') -imgplot = plt.imshow(x_fista1.as_array()) +imgplot = plt.imshow(x_fista1.as_array(),vmin=clims[0],vmax=clims[1]) current = current + 1 a=fig.add_subplot(rows,cols,current) -a.set_title('FBPD') -imgplot = plt.imshow(x_fbpd1.as_array()) +a.set_title('FBPD1') +imgplot = plt.imshow(x_fbpd1.as_array(),vmin=clims[0],vmax=clims[1]) current = current + 1 a=fig.add_subplot(rows,cols,current) a.set_title('CGLS') -imgplot = plt.imshow(x_CGLS.as_array()) +imgplot = plt.imshow(x_CGLS.as_array(),vmin=clims[0],vmax=clims[1]) current = current + 1 a=fig.add_subplot(rows,cols,current) -a.set_title('criteria') +a.set_title('FBPD TV') +imgplot = plt.imshow(x_fbpdtv.as_array(),vmin=clims[0],vmax=clims[1]) + +fig = plt.figure() +# projections row +b=fig.add_subplot(1,1,1) +b.set_title('criteria') imgplot = plt.loglog(criter0 , label='FISTA0') imgplot = plt.loglog(criter1 , label='FISTA1') -imgplot = plt.loglog(criter_fbpd1, label='FBPD') +imgplot = plt.loglog(criter_fbpd1, label='FBPD1') imgplot = plt.loglog(criter_CGLS, label='CGLS') -a.legend(loc='right') +imgplot = plt.loglog(criter_fbpdtv, label='FBPD TV') +b.legend(loc='right') plt.show() #%%
\ No newline at end of file diff --git a/Wrappers/Python/wip/simple_demo_tv.py b/Wrappers/Python/wip/simple_demo_tv.py deleted file mode 100644 index 29e2349..0000000 --- a/Wrappers/Python/wip/simple_demo_tv.py +++ /dev/null @@ -1,99 +0,0 @@ - - -import sys - -sys.path.append("..") - -from ccpi.framework import * -from ccpi.reconstruction.algs import * -from ccpi.reconstruction.funcs import * -from ccpi.reconstruction.ops import * -from ccpi.reconstruction.astra_ops import * - -import numpy as np -import matplotlib.pyplot as plt - -test_case = 2 # 1=parallel2D, 2=cone2D - -# Set up phantom -N = 128 - -x = np.zeros((N,N)) -x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 1.0 -x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 2.0 - -plt.imshow(x) -plt.show() - -vg = ImageGeometry(N,N,None, 1,1,None) - -Phantom = VolumeData(x,geometry=vg) - -# Set up measurement geometry -angles_num = 20; # angles number - -if test_case==1: - angles = np.linspace(0,np.pi,angles_num,endpoint=False) -elif test_case==2: - angles = np.linspace(0,2*np.pi,angles_num,endpoint=False) -else: - NotImplemented - -det_w = 1.0 -det_num = N -SourceOrig = 200 -OrigDetec = 0 - -# Parallelbeam geometry test -if test_case==1: - pg = AcquisitionGeometry('parallel', - '2D', - angles, - det_num,det_w) -elif test_case==2: - pg = AcquisitionGeometry('cone', - '2D', - angles, - det_num, - det_w, - dist_source_center=SourceOrig, - dist_center_detector=OrigDetec) - -# ASTRA operator using volume and sinogram geometries -Aop = AstraProjectorSimple(vg, pg, 'gpu') - -# Unused old astra projector without geometry -# Aop_old = AstraProjector(det_w, det_num, SourceOrig, -# OrigDetec, angles, -# N,'fanbeam','gpu') - -# Try forward and backprojection -b = Aop.direct(Phantom) -out2 = Aop.adjoint(b) - -plt.imshow(b.array) -plt.show() - -plt.imshow(out2.array) -plt.show() - -# Create least squares object instance with projector and data. -f = Norm2sq(Aop,b,c=0.5) - -# Initial guess -x_init = VolumeData(np.zeros(x.shape),geometry=vg) - -# Now least squares plus 1-norm regularization -lam = 1 -g0 = TV2D(lam) - - -# Run FBPD=Forward Backward Primal Dual method on least squares plus 1-norm -opt = {'tol': 1e-4, 'iter': 10000} -x_fbpd1, it_fbpd1, timing_fbpd1, criter_fbpd1 = FBPD(x_init,None,f,g0,opt=opt) - -plt.imshow(x_fbpd1.array) -plt.show() - -plt.semilogy(criter_fbpd1) -plt.show()
\ No newline at end of file |