summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2019-07-05 14:25:10 +0100
committerGitHub <noreply@github.com>2019-07-05 14:25:10 +0100
commit0f542eafe04c4fe7568f83e935859665ffc77e3b (patch)
tree19501d9263d4ce1f28da45aaa0ab7026521a31f8
parentab405e3d4714611ac3964f5a563d809977d8daa6 (diff)
downloadframework-0f542eafe04c4fe7568f83e935859665ffc77e3b.tar.gz
framework-0f542eafe04c4fe7568f83e935859665ffc77e3b.tar.bz2
framework-0f542eafe04c4fe7568f83e935859665ffc77e3b.tar.xz
framework-0f542eafe04c4fe7568f83e935859665ffc77e3b.zip
Norm2Sq and FISTA to give hints of why they fail (#351)
* Norm2Sq and FISTA to give hints of why they fail * added denoising tests from demos * L1Norm store instance of ShrinkageOperator * relax limit for python2 * added source of tests
-rwxr-xr-xWrappers/Python/ccpi/optimisation/algorithms/FISTA.py3
-rw-r--r--Wrappers/Python/ccpi/optimisation/functions/L1Norm.py11
-rwxr-xr-xWrappers/Python/ccpi/optimisation/functions/Norm2Sq.py6
-rwxr-xr-xWrappers/Python/test/test_algorithms.py229
4 files changed, 239 insertions, 10 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py b/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py
index 347dacd..e23116b 100755
--- a/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py
@@ -73,7 +73,8 @@ class FISTA(Algorithm):
self.f = f
self.g = g
-
+ if f.L is None:
+ raise ValueError('Error: Fidelity Function\'s Lipschitz constant is set to None')
self.invL = 1/f.L
self.t = 1
self.update_objective()
diff --git a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
index 97d03b9..cc4bef8 100644
--- a/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/L1Norm.py
@@ -35,7 +35,8 @@ class L1Norm(Function):
def __init__(self, **kwargs):
super(L1Norm, self).__init__()
- self.b = kwargs.get('b',None)
+ self.b = kwargs.get('b',None)
+ self.shinkage_operator = ShrinkageOperator()
def __call__(self, x):
@@ -69,14 +70,14 @@ class L1Norm(Function):
if out is None:
if self.b is not None:
- return self.b + ShrinkageOperator.__call__(self, x - self.b, tau)
+ return self.b + self.shinkage_operator(x - self.b, tau)
else:
- return ShrinkageOperator.__call__(self, x, tau)
+ return self.shinkage_operator(x, tau)
else:
if self.b is not None:
- out.fill(self.b + ShrinkageOperator.__call__(self, x - self.b, tau))
+ out.fill(self.b + self.shinkage_operator(x - self.b, tau))
else:
- out.fill(ShrinkageOperator.__call__(self, x, tau))
+ out.fill(self.shinkage_operator(x, tau))
def proximal_conjugate(self, x, tau, out=None):
diff --git a/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py b/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py
index c8f5e46..0da6e50 100755
--- a/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py
@@ -50,9 +50,11 @@ class Norm2Sq(Function):
try:
self.L = 2.0*self.c*(self.A.norm()**2)
except AttributeError as ae:
- pass
+ warnings.warn('{} could not calculate Lipschitz Constant. {}'.format(
+ self.__class__.__name__, ae))
except NotImplementedError as noe:
- pass
+ warnings.warn('{} could not calculate Lipschitz Constant. {}'.format(
+ self.__class__.__name__, noe))
#def grad(self,x):
# return self.gradient(x, out=None)
diff --git a/Wrappers/Python/test/test_algorithms.py b/Wrappers/Python/test/test_algorithms.py
index f00467c..1577fa6 100755
--- a/Wrappers/Python/test/test_algorithms.py
+++ b/Wrappers/Python/test/test_algorithms.py
@@ -30,8 +30,12 @@ from ccpi.optimisation.algorithms import GradientDescent
from ccpi.optimisation.algorithms import CGLS
from ccpi.optimisation.algorithms import FISTA
+from ccpi.optimisation.algorithms import PDHG
-
+from ccpi.optimisation.operators import Gradient, BlockOperator, FiniteDiff
+from ccpi.optimisation.functions import MixedL21Norm, BlockFunction, L1Norm, KullbackLeibler
+from ccpi.framework import TestData
+import os ,sys
class TestAlgorithms(unittest.TestCase):
def setUp(self):
@@ -108,8 +112,229 @@ class TestAlgorithms(unittest.TestCase):
alg.run(20, verbose=True)
self.assertNumpyArrayAlmostEqual(alg.x.as_array(), b.as_array())
+ def test_FISTA_Norm2Sq(self):
+ print ("Test FISTA Norm2Sq")
+ ig = ImageGeometry(127,139,149)
+ x_init = ImageData(geometry=ig)
+ b = x_init.copy()
+ # fill with random numbers
+ b.fill(numpy.random.random(x_init.shape))
+ x_init = ig.allocate(ImageGeometry.RANDOM)
+ identity = Identity(ig)
+
+ #### it seems FISTA does not work with Nowm2Sq
+ norm2sq = Norm2Sq(identity, b)
+ #norm2sq.L = 2 * norm2sq.c * identity.norm()**2
+ #norm2sq = FunctionOperatorComposition(L2NormSquared(b=b), identity)
+ opt = {'tol': 1e-4, 'memopt':False}
+ print ("initial objective", norm2sq(x_init))
+ alg = FISTA(x_init=x_init, f=norm2sq, g=ZeroFunction())
+ alg.max_iteration = 2
+ alg.run(20, verbose=True)
+ self.assertNumpyArrayAlmostEqual(alg.x.as_array(), b.as_array())
+ def test_FISTA_catch_Lipschitz(self):
+ print ("Test FISTA catch Lipschitz")
+ ig = ImageGeometry(127,139,149)
+ x_init = ImageData(geometry=ig)
+ b = x_init.copy()
+ # fill with random numbers
+ b.fill(numpy.random.random(x_init.shape))
+ x_init = ig.allocate(ImageGeometry.RANDOM)
+ identity = Identity(ig)
+
+ #### it seems FISTA does not work with Nowm2Sq
+ norm2sq = Norm2Sq(identity, b)
+ print ('Lipschitz', norm2sq.L)
+ norm2sq.L = None
+ #norm2sq.L = 2 * norm2sq.c * identity.norm()**2
+ #norm2sq = FunctionOperatorComposition(L2NormSquared(b=b), identity)
+ opt = {'tol': 1e-4, 'memopt':False}
+ print ("initial objective", norm2sq(x_init))
+ try:
+ alg = FISTA(x_init=x_init, f=norm2sq, g=ZeroFunction())
+ self.assertTrue(False)
+ except ValueError as ve:
+ print (ve)
+ self.assertTrue(True)
+ def test_PDHG_Denoising(self):
+ print ("PDHG Denoising with 3 noises")
+ # adapted from demo PDHG_TV_Color_Denoising.py in CIL-Demos repository
+
+ loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
+ data = loader.load(TestData.PEPPERS, size=(256,256))
+ ig = data.geometry
+ ag = ig
+
+ which_noise = 0
+ # Create noisy data.
+ noises = ['gaussian', 'poisson', 's&p']
+ noise = noises[which_noise]
+
+ def setup(data, noise):
+ if noise == 's&p':
+ n1 = TestData.random_noise(data.as_array(), mode = noise, salt_vs_pepper = 0.9, amount=0.2, seed=10)
+ elif noise == 'poisson':
+ scale = 5
+ n1 = TestData.random_noise( data.as_array()/scale, mode = noise, seed = 10)*scale
+ elif noise == 'gaussian':
+ n1 = TestData.random_noise(data.as_array(), mode = noise, seed = 10)
+ else:
+ raise ValueError('Unsupported Noise ', noise)
+ noisy_data = ig.allocate()
+ noisy_data.fill(n1)
+
+ # Regularisation Parameter depending on the noise distribution
+ if noise == 's&p':
+ alpha = 0.8
+ elif noise == 'poisson':
+ alpha = 1
+ elif noise == 'gaussian':
+ alpha = .3
+ # fidelity
+ if noise == 's&p':
+ g = L1Norm(b=noisy_data)
+ elif noise == 'poisson':
+ g = KullbackLeibler(noisy_data)
+ elif noise == 'gaussian':
+ g = 0.5 * L2NormSquared(b=noisy_data)
+ return noisy_data, alpha, g
+
+ noisy_data, alpha, g = setup(data, noise)
+ operator = Gradient(ig, correlation=Gradient.CORRELATION_SPACE)
+
+ f1 = alpha * MixedL21Norm()
+
+
+
+ # Compute operator Norm
+ normK = operator.norm()
+
+ # Primal & dual stepsizes
+ sigma = 1
+ tau = 1/(sigma*normK**2)
+
+ # Setup and run the PDHG algorithm
+ pdhg1 = PDHG(f=f1,g=g,operator=operator, tau=tau, sigma=sigma)
+ pdhg1.max_iteration = 2000
+ pdhg1.update_objective_interval = 200
+ pdhg1.run(1000)
+
+ rmse = (pdhg1.get_output() - data).norm() / data.as_array().size
+ print ("RMSE", rmse)
+ self.assertLess(rmse, 2e-4)
+
+ which_noise = 1
+ noise = noises[which_noise]
+ noisy_data, alpha, g = setup(data, noise)
+ operator = Gradient(ig, correlation=Gradient.CORRELATION_SPACE)
+
+ f1 = alpha * MixedL21Norm()
+
+
+
+ # Compute operator Norm
+ normK = operator.norm()
+
+ # Primal & dual stepsizes
+ sigma = 1
+ tau = 1/(sigma*normK**2)
+
+ # Setup and run the PDHG algorithm
+ pdhg1 = PDHG(f=f1,g=g,operator=operator, tau=tau, sigma=sigma)
+ pdhg1.max_iteration = 2000
+ pdhg1.update_objective_interval = 200
+ pdhg1.run(1000)
+
+ rmse = (pdhg1.get_output() - data).norm() / data.as_array().size
+ print ("RMSE", rmse)
+ self.assertLess(rmse, 2e-4)
+
+
+ which_noise = 2
+ noise = noises[which_noise]
+ noisy_data, alpha, g = setup(data, noise)
+ operator = Gradient(ig, correlation=Gradient.CORRELATION_SPACE)
+
+ f1 = alpha * MixedL21Norm()
+
+
+
+ # Compute operator Norm
+ normK = operator.norm()
+
+ # Primal & dual stepsizes
+ sigma = 1
+ tau = 1/(sigma*normK**2)
+
+ # Setup and run the PDHG algorithm
+ pdhg1 = PDHG(f=f1,g=g,operator=operator, tau=tau, sigma=sigma)
+ pdhg1.max_iteration = 2000
+ pdhg1.update_objective_interval = 200
+ pdhg1.run(1000)
+
+ rmse = (pdhg1.get_output() - data).norm() / data.as_array().size
+ print ("RMSE", rmse)
+ self.assertLess(rmse, 2e-4)
+
+ def test_FISTA_Denoising(self):
+ print ("FISTA Denoising Poisson Noise Tikhonov")
+ # adapted from demo FISTA_Tikhonov_Poisson_Denoising.py in CIL-Demos repository
+ loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
+ data = loader.load(TestData.SHAPES)
+ ig = data.geometry
+ ag = ig
+ N=300
+ # Create Noisy data with Poisson noise
+ scale = 5
+ n1 = TestData.random_noise( data.as_array()/scale, mode = 'poisson', seed = 10)*scale
+ noisy_data = ImageData(n1)
+
+ # Regularisation Parameter
+ alpha = 10
+
+ # Setup and run the FISTA algorithm
+ operator = Gradient(ig)
+ fid = KullbackLeibler(noisy_data)
+
+ def KL_Prox_PosCone(x, tau, out=None):
+
+ if out is None:
+ tmp = 0.5 *( (x - fid.bnoise - tau) + ( (x + fid.bnoise - tau)**2 + 4*tau*fid.b ) .sqrt() )
+ return tmp.maximum(0)
+ else:
+ tmp = 0.5 *( (x - fid.bnoise - tau) +
+ ( (x + fid.bnoise - tau)**2 + 4*tau*fid.b ) .sqrt()
+ )
+ x.add(fid.bnoise, out=out)
+ out -= tau
+ out *= out
+ tmp = fid.b * (4 * tau)
+ out.add(tmp, out=out)
+ out.sqrt(out=out)
+
+ x.subtract(fid.bnoise, out=tmp)
+ tmp -= tau
+
+ out += tmp
+
+ out *= 0.5
+
+ # ADD the constraint here
+ out.maximum(0, out=out)
+
+ fid.proximal = KL_Prox_PosCone
+
+ reg = FunctionOperatorComposition(alpha * L2NormSquared(), operator)
+
+ x_init = ig.allocate()
+ fista = FISTA(x_init=x_init , f=reg, g=fid)
+ fista.max_iteration = 3000
+ fista.update_objective_interval = 500
+ fista.run(3000, verbose=True)
+ rmse = (fista.get_output() - data).norm() / data.as_array().size
+ print ("RMSE", rmse)
+ self.assertLess(rmse, 4.2e-4)
-
def assertNumpyArrayEqual(self, first, second):
res = True
try: