summaryrefslogtreecommitdiffstats
path: root/tests/python/test_line2d.py
blob: de68033ad44043e1fce2ca1b0d76469a529121eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import numpy as np
import unittest
import astra
import math
import pylab

# return length of intersection of the line through points src = (x,y)
# and det (x,y), and the rectangle defined by xmin, ymin, xmax, ymax
#
# TODO: Generalize from 2D to n-dimensional
def intersect_line_rectangle(src, det, xmin, xmax, ymin, ymax):
  EPS = 1e-5

  if np.abs(src[0] - det[0]) < EPS:
    if src[0] >= xmin and src[0] < xmax:
      return ymax - ymin
    else:
      return 0.0
  if np.abs(src[1] - det[1]) < EPS:
    if src[1] >= ymin and src[1] < ymax:
      return xmax - xmin
    else:
      return 0.0

  n = np.sqrt((det[0] - src[0]) ** 2 + (det[1] - src[1]) ** 2)

  check = [ (-(xmin - src[0]), -(det[0] - src[0]) / n ),
            (xmax - src[0], (det[0] - src[0]) / n ),
            (-(ymin - src[1]), -(det[1] - src[1]) / n ),
            (ymax - src[1], (det[1] - src[1]) / n ) ]

  pre = [ -np.Inf ]
  post = [ np.Inf ]

  for p, q in check:
    r = p / (1.0 * q)
    if q > 0:
      post.append(r)    # exiting half-plane
    else:
      pre.append(r)     # entering half-plane

  end_r = np.min(post)
  start_r = np.max(pre)

  if end_r > start_r:
    return end_r - start_r
  else:
    return 0.0

def intersect_line_rectangle_feather(src, det, xmin, xmax, ymin, ymax, feather):
  return intersect_line_rectangle(src, det,
                                  xmin-feather, xmax+feather,
                                  ymin-feather, ymax+feather)

def intersect_line_rectangle_interval(src, det, xmin, xmax, ymin, ymax, f):
  a = intersect_line_rectangle_feather(src, det, xmin, xmax, ymin, ymax, -f)
  b = intersect_line_rectangle(src, det, xmin, xmax, ymin, ymax)
  c = intersect_line_rectangle_feather(src, det, xmin, xmax, ymin, ymax, f)
  return (a,b,c)

def gen_lines_fanflat(proj_geom):
  angles = proj_geom['ProjectionAngles']
  for theta in angles:
    #theta = -theta
    src = ( math.sin(theta) * proj_geom['DistanceOriginSource'],
           -math.cos(theta) * proj_geom['DistanceOriginSource'] )
    detc= (-math.sin(theta) * proj_geom['DistanceOriginDetector'],
            math.cos(theta) * proj_geom['DistanceOriginDetector'] )
    detu= ( math.cos(theta) * proj_geom['DetectorWidth'],
            math.sin(theta) * proj_geom['DetectorWidth'] )

    src = np.array(src, dtype=np.float64)
    detc= np.array(detc, dtype=np.float64)
    detu= np.array(detu, dtype=np.float64)

    detb= detc + (0.5 - 0.5*proj_geom['DetectorCount']) * detu

    for i in range(proj_geom['DetectorCount']):
      yield (src, detb + i * detu)

def gen_lines_fanflat_vec(proj_geom):
  v = proj_geom['Vectors']
  for i in range(v.shape[0]):
    src = v[i,0:2]
    detc = v[i,2:4]
    detu = v[i,4:6]

    detb = detc + (0.5 - 0.5*proj_geom['DetectorCount']) * detu
    for i in range(proj_geom['DetectorCount']):
      yield (src, detb + i * detu)

def gen_lines_parallel(proj_geom):
  angles = proj_geom['ProjectionAngles']
  for theta in angles:
    ray = ( math.sin(theta),
           -math.cos(theta) )
    detc= (0, 0 )
    detu= ( math.cos(theta) * proj_geom['DetectorWidth'],
            math.sin(theta) * proj_geom['DetectorWidth'] )

    ray = np.array(ray, dtype=np.float64)
    detc= np.array(detc, dtype=np.float64)
    detu= np.array(detu, dtype=np.float64)


    detb= detc + (0.5 - 0.5*proj_geom['DetectorCount']) * detu

    for i in range(proj_geom['DetectorCount']):
      yield (detb + i * detu - ray, detb + i * detu)

def gen_lines_parallel_vec(proj_geom):
  v = proj_geom['Vectors']
  for i in range(v.shape[0]):
    ray = v[i,0:2]
    detc = v[i,2:4]
    detu = v[i,4:6]

    detb = detc + (0.5 - 0.5*proj_geom['DetectorCount']) * detu

    for i in range(proj_geom['DetectorCount']):
      yield (detb + i * detu - ray, detb + i * detu)


def gen_lines(proj_geom):
  g = { 'fanflat': gen_lines_fanflat,
        'fanflat_vec': gen_lines_fanflat_vec,
        'parallel': gen_lines_parallel,
        'parallel_vec': gen_lines_parallel_vec }
  for l in g[proj_geom['type']](proj_geom):
    yield l

range2d = ( 8, 64 )


def gen_random_geometry_fanflat():
  pg = astra.create_proj_geom('fanflat', 0.6 + 0.8 * np.random.random(), np.random.randint(*range2d), np.linspace(0, 2*np.pi, np.random.randint(*range2d), endpoint=False), 256 * (0.5 + np.random.random()), 256 * np.random.random())
  return pg

def gen_random_geometry_parallel():
  pg = astra.create_proj_geom('parallel', 0.8 + 0.4 * np.random.random(), np.random.randint(*range2d), np.linspace(0, 2*np.pi, np.random.randint(*range2d), endpoint=False))
  return pg

def gen_random_geometry_fanflat_vec():
  Vectors = np.zeros([16,6])
  # We assume constant detector width in these tests
  w = 0.6 + 0.8 * np.random.random()
  for i in range(Vectors.shape[0]):
    angle1 = 2*np.pi*np.random.random()
    angle2 = angle1 + 0.5 * np.random.random()
    dist1 = 256 * (0.5 + np.random.random())
    detc = 10 * np.random.random(size=2)
    detu = [ math.cos(angle1) * w, math.sin(angle1) * w ]
    src = [ math.sin(angle2) * dist1, -math.cos(angle2) * dist1 ]
    Vectors[i, :] = [ src[0], src[1], detc[0], detc[1], detu[0], detu[1] ]
  pg = astra.create_proj_geom('fanflat_vec', np.random.randint(*range2d), Vectors)

  # TODO: Randomize more
  pg = astra.create_proj_geom('fanflat_vec', np.random.randint(*range2d), Vectors)
  return pg

def gen_random_geometry_parallel_vec():
  Vectors = np.zeros([16,6])
  # We assume constant detector width in these tests
  w = 0.6 + 0.8 * np.random.random()
  for i in range(Vectors.shape[0]):
    l = 0.6 + 0.8 * np.random.random()
    angle1 = 2*np.pi*np.random.random()
    angle2 = angle1 + 0.5 * np.random.random()
    detc = 10 * np.random.random(size=2)
    detu = [ math.cos(angle1) * w, math.sin(angle1) * w ]
    ray = [ math.sin(angle2) * l, -math.cos(angle2) * l ]
    Vectors[i, :] = [ ray[0], ray[1], detc[0], detc[1], detu[0], detu[1] ]
  pg = astra.create_proj_geom('parallel_vec', np.random.randint(*range2d), Vectors)
  return pg




nloops = 50
seed = 123

class TestLineKernel(unittest.TestCase):
  def single_test(self, type):
      shape = np.random.randint(*range2d, size=2)
      # these rectangles are biased, but that shouldn't matter
      rect_min = [ np.random.randint(0, a) for a in shape ]
      rect_max = [ np.random.randint(rect_min[i]+1, shape[i]+1) for i in range(len(shape))]
      if True:
          #pixsize = 0.5 + np.random.random(size=2)
          pixsize = np.array([0.5, 0.5]) + np.random.random()
          origin = 10 * np.random.random(size=2)
      else:
          pixsize = (1.,1.)
          origin = (0.,0.)
      vg = astra.create_vol_geom(shape[1], shape[0],
                                 origin[0] - 0.5 * shape[0] * pixsize[0],
                                 origin[0] + 0.5 * shape[0] * pixsize[0],
                                 origin[1] - 0.5 * shape[1] * pixsize[1],
                                 origin[1] + 0.5 * shape[1] * pixsize[1])
      #print(vg)

      if type == 'parallel':
        pg = gen_random_geometry_parallel()
        projector_id = astra.create_projector('line', pg, vg)
      elif type == 'parallel_vec':
        pg = gen_random_geometry_parallel_vec()
        projector_id = astra.create_projector('line', pg, vg)
      elif type == 'fanflat':
        pg = gen_random_geometry_fanflat()
        projector_id = astra.create_projector('line_fanflat', pg, vg)
      elif type == 'fanflat_vec':
        pg = gen_random_geometry_fanflat_vec()
        projector_id = astra.create_projector('line_fanflat', pg, vg)


      data = np.zeros((shape[1], shape[0]), dtype=np.float32)
      data[rect_min[1]:rect_max[1],rect_min[0]:rect_max[0]] = 1

      sinogram_id, sinogram = astra.create_sino(data, projector_id)

      #print(pg)
      #print(vg)

      astra.data2d.delete(sinogram_id)

      astra.projector.delete(projector_id)

      a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
      b = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
      c = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)

      i = 0
      #print( origin[0] + (-0.5 * shape[0] + rect_min[0]) * pixsize[0], origin[0] + (-0.5 * shape[0] + rect_max[0]) * pixsize[0], origin[1] + (-0.5 * shape[1] + rect_min[1]) * pixsize[1], origin[1] + (-0.5 * shape[1] + rect_max[1]) * pixsize[1])
      for src, det in gen_lines(pg):
        #print(src,det)

        # NB: Flipped y-axis here, since that is how astra interprets 2D volumes
        # We compute line intersections with slightly bigger (cw) and
        # smaller (aw) rectangles, and see if the kernel falls
        # between these two values.
        (aw,bw,cw) = intersect_line_rectangle_interval(src, det,
                      origin[0] + (-0.5 * shape[0] + rect_min[0]) * pixsize[0],
                      origin[0] + (-0.5 * shape[0] + rect_max[0]) * pixsize[0],
                      origin[1] + (+0.5 * shape[1] - rect_max[1]) * pixsize[1],
                      origin[1] + (+0.5 * shape[1] - rect_min[1]) * pixsize[1],
                      1e-3)
        a[i] = aw
        b[i] = bw
        c[i] = cw
        i += 1
      # Add weight for pixel / voxel size
      try:
        detweight = pg['DetectorWidth']
      except KeyError:
        detweight = np.sqrt(pg['Vectors'][0,4]*pg['Vectors'][0,4] + pg['Vectors'][0,5]*pg['Vectors'][0,5] )
      a *= detweight
      b *= detweight
      c *= detweight
      a = a.reshape(astra.functions.geom_size(pg))
      b = b.reshape(astra.functions.geom_size(pg))
      c = c.reshape(astra.functions.geom_size(pg))

      # Check if sinogram lies between a and c
      y = np.min(sinogram-a)
      z = np.min(c-sinogram)
      x = np.max(np.abs(sinogram-b)) # ideally this is small, but can be large
                                     # due to discontinuities in line kernel
      self.assertFalse(z < 0 or y < 0)
      if z < 0 or y < 0:
        print(y,z,x)
        pylab.gray()
        pylab.imshow(data)
        pylab.figure()
        pylab.imshow(sinogram)
        pylab.figure()
        pylab.imshow(b)
        pylab.figure()
        pylab.imshow(a)
        pylab.figure()
        pylab.imshow(c)
        pylab.figure()
        pylab.imshow(sinogram-a)
        pylab.figure()
        pylab.imshow(c-sinogram)
        pylab.show()

  def test_par(self):
    np.random.seed(seed)
    for _ in range(nloops):
      self.single_test('parallel')
  def test_fan(self):
    np.random.seed(seed)
    for _ in range(nloops):
      self.single_test('fanflat')
  def test_parvec(self):
    np.random.seed(seed)
    for _ in range(nloops):
      self.single_test('parallel_vec')
  def test_fanvec(self):
    np.random.seed(seed)
    for _ in range(nloops):
      self.single_test('fanflat_vec')


 

if __name__ == '__main__':
  unittest.main()

#print(intersect_line_rectangle((0.,-256.),(-27.,0.),11.6368454385 20.173128227 3.18989047649 5.62882841606)