1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
/*
-----------------------------------------------------------------------
Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp
2014-2015, CWI, Amsterdam
Contact: astra@uantwerpen.be
Website: http://sf.net/projects/astra-toolbox
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
-----------------------------------------------------------------------
$Id$
*/
template <typename Policy>
void CParallelBeamStripKernelProjector2D::project(Policy& p)
{
if (dynamic_cast<CParallelProjectionGeometry2D*>(m_pProjectionGeometry)) {
projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(),
0, m_pProjectionGeometry->getDetectorCount(), p);
} else if (dynamic_cast<CParallelVecProjectionGeometry2D*>(m_pProjectionGeometry)) {
projectBlock_internal_vector(0, m_pProjectionGeometry->getProjectionAngleCount(),
0, m_pProjectionGeometry->getDetectorCount(), p);
}
}
template <typename Policy>
void CParallelBeamStripKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p)
{
if (dynamic_cast<CParallelProjectionGeometry2D*>(m_pProjectionGeometry)) {
projectBlock_internal(_iProjection, _iProjection + 1,
0, m_pProjectionGeometry->getDetectorCount(), p);
} else if (dynamic_cast<CParallelVecProjectionGeometry2D*>(m_pProjectionGeometry)) {
projectBlock_internal_vector(_iProjection, _iProjection + 1,
0, m_pProjectionGeometry->getDetectorCount(), p);
}
}
template <typename Policy>
void CParallelBeamStripKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p)
{
if (dynamic_cast<CParallelProjectionGeometry2D*>(m_pProjectionGeometry)) {
projectBlock_internal(_iProjection, _iProjection + 1,
_iDetector, _iDetector + 1, p);
} else if (dynamic_cast<CParallelVecProjectionGeometry2D*>(m_pProjectionGeometry)) {
projectBlock_internal_vector(_iProjection, _iProjection + 1,
_iDetector, _iDetector + 1, p);
}
}
//----------------------------------------------------------------------------------------
// PROJECT BLOCK
template <typename Policy>
void CParallelBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p)
{
ASTRA_ASSERT(m_bIsInitialized);
// Some variables
float32 theta, t;
int row, col;
int iAngle;
int iDetector;
float32 res;
float32 PL, PLimitL, PLimitR;
float32 xL, xR, XLimitL, XLimitR;
int x1L,x1R;
float32 x2L, x2R, updateX;
int iVolumeIndex, iRayIndex;
float32 sin_theta, cos_theta, inv_sin_theta, inv_cos_theta;
float32 fabs_sin_theta, fabs_cos_theta, fabs_inv_sin_theta, fabs_inv_cos_theta;
float32 PW, PH, DW, inv_PW, inv_PH;
float32 S, T, U, V, inv_4T;
// loop angles
for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) {
// get values
theta = m_pProjectionGeometry->getProjectionAngle(iAngle);
bool switch_t = false;
if (theta >= 7*PIdiv4) theta -= 2*PI;
if (theta >= 3*PIdiv4) {
theta -= PI;
switch_t = true;
}
// Precalculate sin, cos, 1/cos
sin_theta = sin(theta);
cos_theta = cos(theta);
inv_cos_theta = 1.0f / cos_theta;
inv_sin_theta = 1.0f / sin_theta;
fabs_sin_theta = (sin_theta < 0.0f) ? -sin_theta : sin_theta;
fabs_cos_theta = (cos_theta < 0.0f) ? -cos_theta : cos_theta;
fabs_inv_cos_theta = (inv_cos_theta < 0.0f) ? -inv_cos_theta : inv_cos_theta;
fabs_inv_sin_theta = (inv_sin_theta < 0.0f) ? -inv_sin_theta : inv_sin_theta;
// Other precalculations
PW = m_pVolumeGeometry->getPixelLengthX();
PH = m_pVolumeGeometry->getPixelLengthY();
DW = m_pProjectionGeometry->getDetectorWidth();
inv_PW = 1.0f / PW;
inv_PH = 1.0f / PH;
// [-45?,45?] and [135?,225?]
if (theta < PIdiv4) {
// Precalculate kernel limits
S = -0.5f * fabs_sin_theta * fabs_inv_cos_theta;
T = -S;
U = 1.0f + S;
V = 1.0f - S;
inv_4T = 0.25f / T;
updateX = sin_theta * inv_cos_theta;
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
// get t
t = m_pProjectionGeometry->indexToDetectorOffset(iDetector);
if (switch_t) t = -t;
// calculate left strip extremes (volume coordinates)
PL = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0) - DW*0.5f) * inv_cos_theta;
PLimitL = PL - 0.5f * fabs_sin_theta * fabs_inv_cos_theta * PH;
PLimitR = PLimitL + DW * inv_cos_theta + PH * fabs_sin_theta * fabs_inv_cos_theta;
// calculate strip extremes (pixel coordinates)
XLimitL = (PLimitL - m_pVolumeGeometry->getWindowMinX()) * inv_PW;
XLimitR = (PLimitR - m_pVolumeGeometry->getWindowMinX()) * inv_PW;
xL = (PL - m_pVolumeGeometry->getWindowMinX()) * inv_PW;
xR = xL + (DW * inv_cos_theta) * inv_PW;
// for each row
for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) {
// get strip extremes in column indices
x1L = int((XLimitL > 0.0f) ? XLimitL : XLimitL-1.0f);
x1R = int((XLimitR > 0.0f) ? XLimitR : XLimitR-1.0f);
// get coords w.r.t leftmost column hit by strip
x2L = xL - x1L;
x2R = xR - x1L;
// update strip extremes for the next row
XLimitL += updateX;
XLimitR += updateX;
xL += updateX;
xR += updateX;
// for each affected col
for (col = x1L; col <= x1R; ++col) {
if (col < 0 || col >= m_pVolumeGeometry->getGridColCount()) { x2L -= 1.0f; x2R -= 1.0f; continue; }
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR
if (!p.pixelPrior(iVolumeIndex)) { x2L -= 1.0f; x2R -= 1.0f; continue; }
// right
if (x2R >= V) res = 1.0f;
else if (x2R > U) res = x2R - (x2R-U)*(x2R-U)*inv_4T;
else if (x2R >= T) res = x2R;
else if (x2R > S) res = (x2R-S)*(x2R-S) * inv_4T;
else { x2L -= 1.0f; x2R -= 1.0f; continue; }
// left
if (x2L <= S) {} // - 0.0f
else if (x2L < T) res -= (x2L-S)*(x2L-S) * inv_4T;
else if (x2L <= U) res -= x2L;
else if (x2L < V) res -= x2L - (x2L-U)*(x2L-U)*inv_4T;
else { x2L -= 1.0f; x2R -= 1.0f; continue; }
// POLICY: ADD
p.addWeight(iRayIndex, iVolumeIndex, PW*PH * res);
// POLICY: PIXEL POSTERIOR
p.pixelPosterior(iVolumeIndex);
x2L -= 1.0f;
x2R -= 1.0f;
} // end col loop
} // end row loop
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
} // end detector loop
// [45?,135?] and [225?,315?]
// horizontaly
} else {
// Precalculate kernel limits
S = -0.5f * fabs_cos_theta * fabs_inv_sin_theta;
T = -S;
U = 1.0f + S;
V = 1.0f - S;
inv_4T = 0.25f / T;
updateX = cos_theta * inv_sin_theta;
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
// get t
t = m_pProjectionGeometry->indexToDetectorOffset(iDetector);
if (switch_t) t = -t;
// calculate left strip extremes (volume coordinates)
PL = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0) + DW*0.5f) * inv_sin_theta;
PLimitL = PL + 0.5f * fabs_cos_theta * fabs_inv_sin_theta * PW;
PLimitR = PLimitL - DW * inv_sin_theta - PH * fabs_cos_theta * fabs_inv_sin_theta;
// calculate strip extremes (pixel coordinates)
XLimitL = (m_pVolumeGeometry->getWindowMaxY() - PLimitL) * inv_PH;
XLimitR = (m_pVolumeGeometry->getWindowMaxY() - PLimitR) * inv_PH;
xL = (m_pVolumeGeometry->getWindowMaxY() - PL) * inv_PH;
xR = xL + (DW * fabs_inv_sin_theta) * inv_PH;
// for each col
for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) {
// get strip extremes in column indices
x1L = int((XLimitL > 0.0f) ? XLimitL : XLimitL-1.0f);
x1R = int((XLimitR > 0.0f) ? XLimitR : XLimitR-1.0f);
// get coords w.r.t leftmost column hit by strip
x2L = xL - x1L;
x2R = xR - x1L;
// update strip extremes for the next row
XLimitL += updateX;
XLimitR += updateX;
xL += updateX;
xR += updateX;
// for each affected col
for (row = x1L; row <= x1R; ++row) {
if (row < 0 || row >= m_pVolumeGeometry->getGridRowCount()) { x2L -= 1.0f; x2R -= 1.0f; continue; }
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR
if (!p.pixelPrior(iVolumeIndex)) { x2L -= 1.0f; x2R -= 1.0f; continue; }
// right
if (x2R >= V) res = 1.0f;
else if (x2R > U) res = x2R - (x2R-U)*(x2R-U)*inv_4T;
else if (x2R >= T) res = x2R;
else if (x2R > S) res = (x2R-S)*(x2R-S) * inv_4T;
else { x2L -= 1.0f; x2R -= 1.0f; continue; }
// left
if (x2L <= S) {} // - 0.0f
else if (x2L < T) res -= (x2L-S)*(x2L-S) * inv_4T;
else if (x2L <= U) res -= x2L;
else if (x2L < V) res -= x2L - (x2L-U)*(x2L-U)*inv_4T;
else { x2L -= 1.0f; x2R -= 1.0f; continue; }
// POLICY: ADD
p.addWeight(iRayIndex, iVolumeIndex, PW*PH * res);
// POLICY: PIXEL POSTERIOR
p.pixelPosterior(iVolumeIndex);
x2L -= 1.0f;
x2R -= 1.0f;
} // end row loop
} // end col loop
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
} // end detector loop
} // end theta switch
} // end angle loop
}
//----------------------------------------------------------------------------------------
// PROJECT BLOCK - vector projection geometry
template <typename Policy>
void CParallelBeamStripKernelProjector2D::projectBlock_internal_vector(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p)
{
// variables
float32 detX, detY, detLX, detLY, detRX, detRY, S, T, update_c, update_r, offsetL, offsetR, invTminS;
float32 lengthPerRow, lengthPerCol, inv_pixelLengthX, inv_pixelLengthY, pixelArea;
int iVolumeIndex, iRayIndex, iRayIndexL, iRayIndexR, row, row_top, row_bottom, col, col_left, col_right, iAngle, iDetector, colCount, rowCount;
const SParProjection * proj = 0;
const CParallelVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast<CParallelVecProjectionGeometry2D*>(m_pProjectionGeometry);
inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX();
inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY();
pixelArea = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY();
colCount = m_pVolumeGeometry->getGridColCount();
rowCount = m_pVolumeGeometry->getGridRowCount();
// loop angles
for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) {
proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle];
bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY);
if (vertical) {
S = 0.5f - 0.5f*fabs(proj->fRayX/proj->fRayY);
T = 0.5f + 0.5f*fabs(proj->fRayX/proj->fRayY);
update_c = -m_pVolumeGeometry->getPixelLengthY() * (proj->fRayX/proj->fRayY) * inv_pixelLengthX;
invTminS = 1.0f / (T-S);
} else {
S = 0.5f - 0.5f*fabs(proj->fRayY/proj->fRayX);
T = 0.5f + 0.5f*fabs(proj->fRayY/proj->fRayX);
update_r = -m_pVolumeGeometry->getPixelLengthX() * (proj->fRayY/proj->fRayX) * inv_pixelLengthY;
invTminS = 1.0f / (T-S);
}
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
detLX = proj->fDetSX + (iDetector+0.0f) * proj->fDetUX;
detLY = proj->fDetSY + (iDetector+0.0f) * proj->fDetUY;
detRX = detLX + proj->fDetUX;
detRY = detLY + proj->fDetUY;
// vertically
if (vertical) {
// calculate cL and cR for row 0
float32 xL = detLX + (proj->fRayX/proj->fRayY)*(m_pVolumeGeometry->pixelRowToCenterY(0)-detLY);
float32 cL = (xL - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX - 0.5f;
float32 xR = detRX + (proj->fRayX/proj->fRayY)*(m_pVolumeGeometry->pixelRowToCenterY(0)-detRY);
float32 cR = (xR - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX - 0.5f;
if (cR < cL) {
float32 tmp = cL;
cL = cR;
cR = tmp;
}
// for each row
for (row = 0; row < rowCount; ++row, cL += update_c, cR += update_c) {
col_left = int(cL-0.5f+S);
col_right = int(cR+1.5-S);
if (col_left < 0) col_left = 0;
if (col_right > colCount-1) col_right = colCount-1;
// for each column
for (col = col_left; col <= col_right; ++col) {
iVolumeIndex = row * colCount + col;
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
offsetL = cL - float32(col);
offsetR = cR - float32(col);
// right ray edge
float32 res = 0.0f;
if (T <= offsetR) res = 1.0f;
else if (S < offsetR) res = 1.0f - 0.5f*(T-offsetR)*(T-offsetR)*invTminS;
else if (-S < offsetR) res = 0.5f + offsetR;
else if (-T < offsetR) res = 0.5f*(offsetR+T)*(offsetR+T)*invTminS;
// left ray edge
if (T <= offsetL) res -= 1.0f;
else if (S < offsetL) res -= 1.0f - 0.5f*(T-offsetL)*(T-offsetL)*invTminS;
else if (-S < offsetL) res -= 0.5f + offsetL;
else if (-T < offsetL) res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS;
p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res);
p.pixelPosterior(iVolumeIndex);
}
}
}
}
// horizontally
else {
// calculate rL and rR for row 0
float32 yL = detLY + (proj->fRayY/proj->fRayX)*(m_pVolumeGeometry->pixelColToCenterX(0)-detLX);
float32 rL = (m_pVolumeGeometry->getWindowMaxY() - yL) * inv_pixelLengthY - 0.5f;
float32 yR = detRY + (proj->fRayY/proj->fRayX)*(m_pVolumeGeometry->pixelColToCenterX(0)-detRX);
float32 rR = (m_pVolumeGeometry->getWindowMaxY() - yR) * inv_pixelLengthY - 0.5f;
if (rR < rL) {
float32 tmp = rL;
rL = rR;
rR = tmp;
}
// for each column
for (col = 0; col < colCount; ++col, rL += update_r, rR += update_r) {
row_top = int(rL-0.5f+S);
row_bottom = int(rR+1.5-S);
if (row_top < 0) row_top = 0;
if (row_bottom > rowCount-1) row_bottom = rowCount-1;
// for each row
for (row = row_top; row <= row_bottom; ++row) {
iVolumeIndex = row * colCount + col;
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
offsetL = rL - float32(row);
offsetR = rR - float32(row);
// right ray edge
float32 res = 0.0f;
if (T <= offsetR) res = 1.0f;
else if (S < offsetR) res = 1.0f - 0.5f*(T-offsetR)*(T-offsetR)*invTminS;
else if (-S < offsetR) res = 0.5f + offsetR;
else if (-T < offsetR) res = 0.5f*(offsetR+T)*(offsetR+T)*invTminS;
// left ray edge
if (T <= offsetL) res -= 1.0f;
else if (S < offsetL) res -= 1.0f - 0.5f*(T-offsetL)*(T-offsetL)*invTminS;
else if (-S < offsetL) res -= 0.5f + offsetL;
else if (-T < offsetL) res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS;
p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res);
p.pixelPosterior(iVolumeIndex);
}
}
}
}
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
} // end loop detector
} // end loop angles
}
|