summaryrefslogtreecommitdiffstats
path: root/cuda/3d/fdk.cu
blob: e549670babf59f169cc79a63d3389f9d6b6ca00c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/*
-----------------------------------------------------------------------
Copyright: 2010-2021, imec Vision Lab, University of Antwerp
           2014-2021, CWI, Amsterdam

Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/

This file is part of the ASTRA Toolbox.


The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.

-----------------------------------------------------------------------
*/

#include "astra/cuda/3d/util3d.h"
#include "astra/cuda/3d/dims3d.h"
#include "astra/cuda/3d/arith3d.h"
#include "astra/cuda/3d/cone_bp.h"

#include "astra/cuda/2d/fft.h"

#include "astra/Logging.h"

#include <cstdio>
#include <cassert>
#include <iostream>
#include <list>

#include <cuda.h>

namespace astraCUDA3d {

static const unsigned int g_anglesPerWeightBlock = 16;
static const unsigned int g_detBlockU = 32;
static const unsigned int g_detBlockV = 32;

static const unsigned g_MaxAngles = 12000;

__constant__ float gC_angle[g_MaxAngles];



// TODO: To support non-cube voxels, preweighting needs per-view
// parameters. NB: Need to properly take into account the
// anisotropic volume normalization done for that too.


__global__ void devFDK_preweight(void* D_projData, unsigned int projPitch, unsigned int startAngle, unsigned int endAngle, float fSrcOrigin, float fDetOrigin, float fZShift, float fDetUSize, float fDetVSize, const SDimensions3D dims)
{
	float* projData = (float*)D_projData;
	int angle = startAngle + blockIdx.y * g_anglesPerWeightBlock + threadIdx.y;
	if (angle >= endAngle)
		return;

	const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x;
	const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV;
	int endDetectorV = startDetectorV + g_detBlockV;
	if (endDetectorV > dims.iProjV)
		endDetectorV = dims.iProjV;

	// We need the length of the central ray and the length of the ray(s) to
	// our detector pixel(s).

	const float fCentralRayLength = fSrcOrigin + fDetOrigin;

	const float fU = (detectorU - 0.5f*dims.iProjU + 0.5f) * fDetUSize;

	const float fT = fCentralRayLength * fCentralRayLength + fU * fU;

	float fV = (startDetectorV - 0.5f*dims.iProjV + 0.5f) * fDetVSize + fZShift;

	// Contributions to the weighting factors:
	// fCentralRayLength / fRayLength   : the main FDK preweighting factor
	// fSrcOrigin / (fDetUSize * fCentralRayLength)
	//                                  : to adjust the filter to the det width
	// pi / (2 * iProjAngles)           : scaling of the integral over angles

	const float fW2 = fCentralRayLength / (fDetUSize * fSrcOrigin);
	const float fW = fCentralRayLength * fW2 * (M_PI / 2.0f) / (float)dims.iProjAngles;

	for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV)
	{
		const float fRayLength = sqrtf(fT + fV * fV);

		const float fWeight = fW / fRayLength;

		projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] *= fWeight;

		fV += fDetVSize;
	}
}

__global__ void devFDK_ParkerWeight(void* D_projData, unsigned int projPitch, unsigned int startAngle, unsigned int endAngle, float fSrcOrigin, float fDetOrigin, float fDetUSize, float fCentralFanAngle, float fScale, const SDimensions3D dims)
{
	float* projData = (float*)D_projData;
	int angle = startAngle + blockIdx.y * g_anglesPerWeightBlock + threadIdx.y;
	if (angle >= endAngle)
		return;

	const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x;
	const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV;
	int endDetectorV = startDetectorV + g_detBlockV;
	if (endDetectorV > dims.iProjV)
		endDetectorV = dims.iProjV;

	// We need the length of the central ray and the length of the projection
	// of our ray onto the central slice

	const float fCentralRayLength = fSrcOrigin + fDetOrigin;

	// TODO: Detector pixel size
	const float fU = (detectorU - 0.5f*dims.iProjU + 0.5f) * fDetUSize;

	const float fGamma = atanf(fU / fCentralRayLength);
	float fBeta = gC_angle[angle];

	// compute the weight depending on the location in the central fan's radon
	// space
	float fWeight;

	if (fBeta <= 0.0f) {
		fWeight = 0.0f;
	} else if (fBeta <= 2.0f*(fCentralFanAngle + fGamma)) {
		fWeight = sinf((M_PI / 4.0f) * fBeta / (fCentralFanAngle + fGamma));
		fWeight *= fWeight;
	} else if (fBeta <= M_PI + 2*fGamma) {
		fWeight = 1.0f;
	} else if (fBeta <= M_PI + 2*fCentralFanAngle) {
		fWeight = sinf((M_PI / 4.0f) * (M_PI + 2.0f*fCentralFanAngle - fBeta) / (fCentralFanAngle - fGamma));
		fWeight *= fWeight;
	} else {
		fWeight = 0.0f;
	}

	fWeight *= fScale;

	for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV)
	{

		projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] *= fWeight;

	}
}



// Perform the FDK pre-weighting and filtering
bool FDK_PreWeight(cudaPitchedPtr D_projData,
                float fSrcOrigin, float fDetOrigin,
                float fZShift,
                float fDetUSize, float fDetVSize,
				bool bShortScan,
                const SDimensions3D& dims, const float* angles)
{
	// The pre-weighting factor for a ray is the cosine of the angle between
	// the central line and the ray.

	dim3 dimBlock(g_detBlockU, g_anglesPerWeightBlock);
	dim3 dimGrid( ((dims.iProjU+g_detBlockU-1)/g_detBlockU)*((dims.iProjV+g_detBlockV-1)/g_detBlockV),
	              (dims.iProjAngles+g_anglesPerWeightBlock-1)/g_anglesPerWeightBlock);

	int projPitch = D_projData.pitch/sizeof(float);

	devFDK_preweight<<<dimGrid, dimBlock>>>(D_projData.ptr, projPitch, 0, dims.iProjAngles, fSrcOrigin, fDetOrigin, fZShift, fDetUSize, fDetVSize, dims);

	if (!checkCuda(cudaThreadSynchronize(), "FDK_PreWeight"))
		return false;

	if (bShortScan && dims.iProjAngles > 1) {
		ASTRA_DEBUG("Doing Parker weighting");
		// We do short-scan Parker weighting

		// First, determine (in a very basic way) the interval that's
		// been scanned. We assume angles[0] is one of the endpoints of the
		// range.
		float fdA = angles[1] - angles[0];

		while (fdA < -M_PI)
			fdA += 2*M_PI;
		while (fdA >= M_PI)
			fdA -= 2*M_PI;

		float fAngleBase;
		if (fdA >= 0.0f) {
			// going up from angles[0]
			fAngleBase = angles[0];
			ASTRA_DEBUG("Second angle >= first angle, so assuming angles are incrementing");
		} else {
			// going down from angles[0]
			fAngleBase = angles[dims.iProjAngles - 1];
			ASTRA_DEBUG("Second angle < first angle, so assuming angles are decrementing");
		}

		// We pick the lowest end of the range, and then
		// move all angles so they fall in [0,2pi)

		float *fRelAngles = new float[dims.iProjAngles];
		for (unsigned int i = 0; i < dims.iProjAngles; ++i) {
			float f = angles[i] - fAngleBase;
			while (f >= 2*M_PI)
				f -= 2*M_PI;
			while (f < 0)
				f += 2*M_PI;
			fRelAngles[i] = f;
		}

		float fRange = fabs(fRelAngles[dims.iProjAngles-1] - fRelAngles[0]);
		ASTRA_DEBUG("Assuming angles are linearly ordered and equally spaced for Parker weighting. Angular range %f radians", fRange);
		float fScale = fRange / M_PI;

		cudaError_t e1 = cudaMemcpyToSymbol(gC_angle, fRelAngles,
		                                    dims.iProjAngles*sizeof(float), 0,
		                                    cudaMemcpyHostToDevice);
		assert(!e1);
		delete[] fRelAngles;

		float fCentralFanAngle = fabs(atanf(fDetUSize * (dims.iProjU*0.5f) /
		                               (fSrcOrigin + fDetOrigin)));

		// Check range, but take possible discretisation and rounding into affect
		if (fRange + 1e-3 < (M_PI + 2*fCentralFanAngle) * (dims.iProjAngles - 1)/ dims.iProjAngles) {
			ASTRA_WARN("Angular range (%f rad) smaller than Parker weighting range (%f rad)", fRange, M_PI + 2*fCentralFanAngle);
		}

		devFDK_ParkerWeight<<<dimGrid, dimBlock>>>(D_projData.ptr, projPitch, 0, dims.iProjAngles, fSrcOrigin, fDetOrigin, fDetUSize, fCentralFanAngle, fScale, dims);

		if (!checkCuda(cudaThreadSynchronize(), "FDK_PreWeight ParkerWeight"))
			return false;
	}

	return true;
}

bool FDK_Filter(cudaPitchedPtr D_projData,
                const float *pfFilter,
                const SDimensions3D& dims)
{
	// The filtering is a regular ramp filter per detector line.

	// Generate filter
	// TODO: Check errors
	int iPaddedDetCount = calcNextPowerOfTwo(2 * dims.iProjU);
	int iHalfFFTSize = astra::calcFFTFourierSize(iPaddedDetCount);


	cufftComplex *pHostFilter = new cufftComplex[dims.iProjAngles * iHalfFFTSize];
	memset(pHostFilter, 0, sizeof(cufftComplex) * dims.iProjAngles * iHalfFFTSize);

	if (pfFilter == 0){
		astra::SFilterConfig filter;
		filter.m_eType = astra::FILTER_RAMLAK;
		astraCUDA::genCuFFTFilter(filter, dims.iProjAngles, pHostFilter, iPaddedDetCount, iHalfFFTSize);
	} else {
		for (int i = 0; i < dims.iProjAngles * iHalfFFTSize; i++) {
			pHostFilter[i].x = pfFilter[i];
			pHostFilter[i].y = 0;
		}
	}

	cufftComplex * D_filter;

	astraCUDA::allocateComplexOnDevice(dims.iProjAngles, iHalfFFTSize, &D_filter);
	astraCUDA::uploadComplexArrayToDevice(dims.iProjAngles, iHalfFFTSize, pHostFilter, D_filter);

	delete [] pHostFilter;




	int projPitch = D_projData.pitch/sizeof(float);
	

	// We process one sinogram at a time.
	float* D_sinoData = (float*)D_projData.ptr;

	cufftComplex * D_sinoFFT = NULL;
	astraCUDA::allocateComplexOnDevice(dims.iProjAngles, iHalfFFTSize, &D_sinoFFT);

	bool ok = true;

	for (int v = 0; v < dims.iProjV; ++v) {

		ok = astraCUDA::runCudaFFT(dims.iProjAngles, D_sinoData, projPitch,
		                dims.iProjU, iPaddedDetCount, iHalfFFTSize,
		                D_sinoFFT);

		if (!ok) break;

		astraCUDA::applyFilter(dims.iProjAngles, iHalfFFTSize, D_sinoFFT, D_filter);


		ok = astraCUDA::runCudaIFFT(dims.iProjAngles, D_sinoFFT, D_sinoData, projPitch,
		                 dims.iProjU, iPaddedDetCount, iHalfFFTSize);

		if (!ok) break;

		D_sinoData += (dims.iProjAngles * projPitch);
	}

	astraCUDA::freeComplexOnDevice(D_sinoFFT);
	astraCUDA::freeComplexOnDevice(D_filter);

	return ok;
}


bool FDK(cudaPitchedPtr D_volumeData,
         cudaPitchedPtr D_projData,
         const SConeProjection* angles,
         const SDimensions3D& dims, SProjectorParams3D params, bool bShortScan,
	     const float* pfFilter)
{
	bool ok;

	// NB: We don't support arbitrary cone_vec geometries here.
	// Only those that are vertical sub-geometries
	// (cf. CompositeGeometryManager) of regular cone geometries.
	assert(dims.iProjAngles > 0);
	const SConeProjection& p0 = angles[0];

	// assuming U is in the XY plane, V is parallel to Z axis
	float fDetCX = p0.fDetSX + 0.5*dims.iProjU*p0.fDetUX;
	float fDetCY = p0.fDetSY + 0.5*dims.iProjU*p0.fDetUY;
	float fDetCZ = p0.fDetSZ + 0.5*dims.iProjV*p0.fDetVZ;

	float fSrcOrigin = sqrt(p0.fSrcX*p0.fSrcX + p0.fSrcY*p0.fSrcY);
	float fDetOrigin = sqrt(fDetCX*fDetCX + fDetCY*fDetCY);
	float fDetUSize = sqrt(p0.fDetUX*p0.fDetUX + p0.fDetUY*p0.fDetUY);
	float fDetVSize = abs(p0.fDetVZ);

	float fZShift = fDetCZ - p0.fSrcZ;

	float *pfAngles = new float[dims.iProjAngles];
	for (unsigned int i = 0; i < dims.iProjAngles; ++i) {
		// FIXME: Sign/order
		pfAngles[i] = -atan2(angles[i].fSrcX, angles[i].fSrcY) + M_PI;
	}


#if 1
	ok = FDK_PreWeight(D_projData, fSrcOrigin, fDetOrigin,
	                fZShift, fDetUSize, fDetVSize,
	                bShortScan, dims, pfAngles);
#else
	ok = true;
#endif
	delete[] pfAngles;

	if (!ok)
		return false;

#if 1
	// Perform filtering
	ok = FDK_Filter(D_projData, pfFilter, dims);
#endif

	if (!ok)
		return false;

	// Perform BP

	params.bFDKWeighting = true;

	//ok = FDK_BP(D_volumeData, D_projData, fSrcOrigin, fDetOrigin, 0.0f, 0.0f, fDetUSize, fDetVSize, dims, pfAngles);
	ok = ConeBP(D_volumeData, D_projData, dims, angles, params);

	if (!ok)
		return false;

	return true;
}


}