summaryrefslogtreecommitdiffstats
path: root/cuda/2d/em.cu
blob: b281516f31ac966dcfad15ee0d00715e59c2920e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/*
-----------------------------------------------------------------------
Copyright 2012 iMinds-Vision Lab, University of Antwerp

Contact: astra@ua.ac.be
Website: http://astra.ua.ac.be


This file is part of the
All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").

The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.

-----------------------------------------------------------------------
$Id$
*/

#include <cstdio>
#include <cassert>

#include "em.h"
#include "util.h"
#include "arith.h"

#ifdef STANDALONE
#include "testutil.h"
#endif

namespace astraCUDA {


// TODO: ensure non-negativity somewhere??


EM::EM()
{
	D_projData = 0;
	D_tmpData = 0;
	D_pixelWeight = 0;

}


EM::~EM()
{
	reset();
}

void EM::reset()
{
	cudaFree(D_projData);
	cudaFree(D_tmpData);
	cudaFree(D_pixelWeight);

	D_projData = 0;
	D_tmpData = 0;
	D_pixelWeight = 0;

	ReconAlgo::reset();
}


bool EM::init()
{
	allocateVolumeData(D_pixelWeight, pixelPitch, dims);
	zeroVolumeData(D_pixelWeight, pixelPitch, dims);

	allocateVolumeData(D_tmpData, tmpPitch, dims);
	zeroVolumeData(D_tmpData, tmpPitch, dims);

	allocateProjectionData(D_projData, projPitch, dims);
	zeroProjectionData(D_projData, projPitch, dims);

	// We can't precompute pixelWeights when using a volume mask
#if 0 
	if (!useVolumeMask)
#endif
		precomputeWeights();

	// TODO: check if allocations succeeded
	return true;
}

bool EM::precomputeWeights()
{
	zeroVolumeData(D_pixelWeight, pixelPitch, dims);
#if 0
	if (useSinogramMask) {
		callBP(D_pixelWeight, pixelPitch, D_smaskData, smaskPitch);
	} else
#endif
	{
		processVol<opSet>(D_projData, 1.0f, projPitch, dims.iProjDets, dims.iProjAngles);
		callBP(D_pixelWeight, pixelPitch, D_projData, projPitch);
	}
	processVol<opInvert>(D_pixelWeight, pixelPitch, dims.iVolWidth, dims.iVolHeight);

#if 0
	if (useVolumeMask) {
		// scale pixel weights with mask to zero out masked pixels
		processVol<opMul>(D_pixelWeight, D_maskData, pixelPitch, dims.iVolWidth, dims.iVolHeight);
	}
#endif

	return true;
}

bool EM::iterate(unsigned int iterations)
{
	shouldAbort = false;

#if 0
	if (useVolumeMask)
		precomputeWeights();
#endif

	// iteration
	for (unsigned int iter = 0; iter < iterations && !shouldAbort; ++iter) {

		// Do FP of volumeData 
		zeroProjectionData(D_projData, projPitch, dims);
		callFP(D_volumeData, volumePitch, D_projData, projPitch, 1.0f);

		// Divide sinogram by FP (into projData)
		processVol<opDividedBy>(D_projData, D_sinoData, projPitch, dims.iProjDets, dims.iProjAngles);

		// Do BP of projData into tmpData
		zeroVolumeData(D_tmpData, tmpPitch, dims);
		callBP(D_tmpData, tmpPitch, D_projData, projPitch);

		// Multiply volumeData with tmpData divided by pixel weights
		processVol<opMul2>(D_volumeData, D_tmpData, D_pixelWeight, pixelPitch, dims.iVolWidth, dims.iVolHeight);

	}

	return true;
}

float EM::computeDiffNorm()
{
	// copy sinogram to projection data
	cudaMemcpy2D(D_projData, sizeof(float)*projPitch, D_sinoData, sizeof(float)*sinoPitch, sizeof(float)*(dims.iProjDets), dims.iProjAngles, cudaMemcpyDeviceToDevice);

	// do FP, subtracting projection from sinogram
	if (useVolumeMask) {
			cudaMemcpy2D(D_tmpData, sizeof(float)*tmpPitch, D_volumeData, sizeof(float)*volumePitch, sizeof(float)*(dims.iVolWidth), dims.iVolHeight, cudaMemcpyDeviceToDevice);
			processVol<opMul>(D_tmpData, D_maskData, tmpPitch, dims.iVolWidth, dims.iVolHeight);
			callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f);
	} else {
			callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f);
	}


	// compute norm of D_projData

	float s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);

	return sqrt(s);
}


bool doEM(float* D_volumeData, unsigned int volumePitch,
          float* D_sinoData, unsigned int sinoPitch,
          const SDimensions& dims, const float* angles,
          const float* TOffsets, unsigned int iterations)
{
	EM em;
	bool ok = true;

	ok &= em.setGeometry(dims, angles);
	if (TOffsets)
		ok &= em.setTOffsets(TOffsets);

	if (!ok)
		return false;

	ok = em.init();
	if (!ok)
		return false;

	ok &= em.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch);
	if (!ok)
		return false;

	ok = em.iterate(iterations);

	return ok;
}

}

#ifdef STANDALONE

using namespace astraCUDA;

int main()
{
	float* D_volumeData;
	float* D_sinoData;

	SDimensions dims;
	dims.iVolWidth = 1024;
	dims.iVolHeight = 1024;
	dims.iProjAngles = 512;
	dims.iProjDets = 1536;
	dims.fDetScale = 1.0f;
	dims.iRaysPerDet = 1;
	unsigned int volumePitch, sinoPitch;

	allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
	zeroVolume(D_volumeData, volumePitch, dims.iVolWidth, dims.iVolHeight);
	printf("pitch: %u\n", volumePitch);

	allocateVolume(D_sinoData, dims.iProjDets, dims.iProjAngles, sinoPitch);
	zeroVolume(D_sinoData, sinoPitch, dims.iProjDets, dims.iProjAngles);
	printf("pitch: %u\n", sinoPitch);
	
	unsigned int y, x;
	float* sino = loadImage("sino.png", y, x);

	float* img = new float[dims.iVolWidth*dims.iVolHeight];

	copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_sinoData, sinoPitch);

	float* angle = new float[dims.iProjAngles];

	for (unsigned int i = 0; i < dims.iProjAngles; ++i)
		angle[i] = i*(M_PI/dims.iProjAngles);

	EM em;

	em.setGeometry(dims, angle);
	em.init();

	// TODO: Initialize D_volumeData with an unfiltered backprojection

	em.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch);

	em.iterate(25);


	delete[] angle;

	copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);

	saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img);

	return 0;
}

#endif