/* ----------------------------------------------------------------------- Copyright 2012 iMinds-Vision Lab, University of Antwerp Contact: astra@ua.ac.be Website: http://astra.ua.ac.be This file is part of the All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. ----------------------------------------------------------------------- $Id$ */ #include "astra/ParallelBeamLinearKernelProjector2D.h" #include <cmath> #include <boost/lexical_cast.hpp> #include "astra/DataProjectorPolicies.h" using namespace std; using namespace astra; #include "astra/ParallelBeamLinearKernelProjector2D.inl" // type of the projector, needed to register with CProjectorFactory std::string CParallelBeamLinearKernelProjector2D::type = "linear"; //---------------------------------------------------------------------------------------- // default constructor CParallelBeamLinearKernelProjector2D::CParallelBeamLinearKernelProjector2D() { _clear(); } //---------------------------------------------------------------------------------------- // constructor CParallelBeamLinearKernelProjector2D::CParallelBeamLinearKernelProjector2D(CParallelProjectionGeometry2D* _pProjectionGeometry, CVolumeGeometry2D* _pReconstructionGeometry) { _clear(); initialize(_pProjectionGeometry, _pReconstructionGeometry); } //---------------------------------------------------------------------------------------- // destructor CParallelBeamLinearKernelProjector2D::~CParallelBeamLinearKernelProjector2D() { clear(); } //--------------------------------------------------------------------------------------- // Clear - CParallelBeamLinearKernelProjector2D void CParallelBeamLinearKernelProjector2D::_clear() { CProjector2D::_clear(); m_bIsInitialized = false; } //--------------------------------------------------------------------------------------- // Clear - Public void CParallelBeamLinearKernelProjector2D::clear() { CProjector2D::clear(); m_bIsInitialized = false; } //--------------------------------------------------------------------------------------- // Check bool CParallelBeamLinearKernelProjector2D::_check() { // check base class ASTRA_CONFIG_CHECK(CProjector2D::_check(), "ParallelBeamLinearKernelProjector2D", "Error in Projector2D initialization"); ASTRA_CONFIG_CHECK(dynamic_cast<CParallelProjectionGeometry2D*>(m_pProjectionGeometry), "ParallelBeamLinearKernelProjector2D", "Unsupported projection geometry"); /// TODO: ADD PIXEL H/W LIMITATIONS ASTRA_CONFIG_CHECK(m_pVolumeGeometry->getPixelLengthX() == m_pVolumeGeometry->getPixelLengthY(), "ParallelBeamLinearKernelProjector2D", "Pixel height must equal pixel width."); // success return true; } //--------------------------------------------------------------------------------------- // Initialize, use a Config object bool CParallelBeamLinearKernelProjector2D::initialize(const Config& _cfg) { ASTRA_ASSERT(_cfg.self); // if already initialized, clear first if (m_bIsInitialized) { clear(); } // initialization of parent class if (!CProjector2D::initialize(_cfg)) { return false; } // success m_bIsInitialized = _check(); return m_bIsInitialized; } //--------------------------------------------------------------------------------------- // Initialize bool CParallelBeamLinearKernelProjector2D::initialize(CParallelProjectionGeometry2D* _pProjectionGeometry, CVolumeGeometry2D* _pVolumeGeometry) { // if already initialized, clear first if (m_bIsInitialized) { clear(); } // hardcopy geometries m_pProjectionGeometry = _pProjectionGeometry->clone(); m_pVolumeGeometry = _pVolumeGeometry->clone(); // success m_bIsInitialized = _check(); return m_bIsInitialized; } //---------------------------------------------------------------------------------------- // Get maximum amount of weights on a single ray int CParallelBeamLinearKernelProjector2D::getProjectionWeightsCount(int _iProjectionIndex) { int maxDim = max(m_pVolumeGeometry->getGridRowCount(), m_pVolumeGeometry->getGridColCount()); return maxDim * 2 + 1; } //---------------------------------------------------------------------------------------- // Single Ray Weights void CParallelBeamLinearKernelProjector2D::computeSingleRayWeights(int _iProjectionIndex, int _iDetectorIndex, SPixelWeight* _pWeightedPixels, int _iMaxPixelCount, int& _iStoredPixelCount) { ASTRA_ASSERT(m_bIsInitialized); StorePixelWeightsPolicy p(_pWeightedPixels, _iMaxPixelCount); projectSingleRay(_iProjectionIndex, _iDetectorIndex, p); _iStoredPixelCount = p.getStoredPixelCount(); } //---------------------------------------------------------------------------------------- // Splat a single point std::vector<SDetector2D> CParallelBeamLinearKernelProjector2D::projectPoint(int _iRow, int _iCol) { float32 xUL = m_pVolumeGeometry->pixelColToCenterX(_iCol) - m_pVolumeGeometry->getPixelLengthX() * 1.5f; float32 yUL = m_pVolumeGeometry->pixelRowToCenterY(_iRow) - m_pVolumeGeometry->getPixelLengthY() * 1.5f; float32 xUR = m_pVolumeGeometry->pixelColToCenterX(_iCol) + m_pVolumeGeometry->getPixelLengthX() * 1.5f; float32 yUR = m_pVolumeGeometry->pixelRowToCenterY(_iRow) - m_pVolumeGeometry->getPixelLengthY() * 1.5f; float32 xLL = m_pVolumeGeometry->pixelColToCenterX(_iCol) - m_pVolumeGeometry->getPixelLengthX() * 1.5f; float32 yLL = m_pVolumeGeometry->pixelRowToCenterY(_iRow) + m_pVolumeGeometry->getPixelLengthY() * 1.5f; float32 xLR = m_pVolumeGeometry->pixelColToCenterX(_iCol) + m_pVolumeGeometry->getPixelLengthX() * 1.5f; float32 yLR = m_pVolumeGeometry->pixelRowToCenterY(_iRow) + m_pVolumeGeometry->getPixelLengthY() * 1.5f; std::vector<SDetector2D> res; // loop projectors and detectors for (int iProjection = 0; iProjection < m_pProjectionGeometry->getProjectionAngleCount(); ++iProjection) { // get projection angle float32 theta = m_pProjectionGeometry->getProjectionAngle(iProjection); if (theta >= 7*PIdiv4) theta -= 2*PI; bool inverse = false; if (theta >= 3*PIdiv4) { theta -= PI; inverse = true; } // calculate distance from the center of the voxel to the ray though the origin float32 tUL = xUL * cos(theta) + yUL * sin(theta); float32 tUR = xUR * cos(theta) + yUR * sin(theta); float32 tLL = xLL * cos(theta) + yLL * sin(theta); float32 tLR = xLR * cos(theta) + yLR * sin(theta); if (inverse) { tUL *= -1.0f; tUR *= -1.0f; tLL *= -1.0f; tLR *= -1.0f; } float32 tMin = min(tUL, min(tUR, min(tLL,tLR))); float32 tMax = max(tUL, max(tUR, max(tLL,tLR))); // calculate the offset on the detectorarray (in indices) int dmin = (int)floor(m_pProjectionGeometry->detectorOffsetToIndexFloat(tMin)); int dmax = (int)ceil(m_pProjectionGeometry->detectorOffsetToIndexFloat(tMax)); // add affected detectors to the list for (int i = dmin; i <= dmax; ++i) { if (i >= 0 && i < m_pProjectionGeometry->getDetectorCount()) { SDetector2D det; det.m_iAngleIndex = iProjection; det.m_iDetectorIndex = i; det.m_iIndex = iProjection * getProjectionGeometry()->getDetectorCount() + i; res.push_back(det); } } } // return result vector return res; }