/*
-----------------------------------------------------------------------
Copyright: 2010-2014, iMinds-Vision Lab, University of Antwerp
2014, CWI, Amsterdam
Contact: astra@uantwerpen.be
Website: http://sf.net/projects/astra-toolbox
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
$Id$
*/
#include "astra/CudaForwardProjectionAlgorithm3D.h"
#ifdef ASTRA_CUDA
#include
#include "astra/AstraObjectManager.h"
#include "astra/CudaProjector3D.h"
#include "astra/ConeProjectionGeometry3D.h"
#include "astra/ParallelProjectionGeometry3D.h"
#include "astra/ParallelVecProjectionGeometry3D.h"
#include "astra/ConeVecProjectionGeometry3D.h"
#include "../cuda/3d/astra3d.h"
using namespace std;
namespace astra {
// type of the algorithm, needed to register with CAlgorithmFactory
std::string CCudaForwardProjectionAlgorithm3D::type = "FP3D_CUDA";
//----------------------------------------------------------------------------------------
// Constructor
CCudaForwardProjectionAlgorithm3D::CCudaForwardProjectionAlgorithm3D()
{
m_bIsInitialized = false;
m_iGPUIndex = -1;
m_iDetectorSuperSampling = 1;
m_pProjector = 0;
m_pProjections = 0;
m_pVolume = 0;
}
//----------------------------------------------------------------------------------------
// Destructor
CCudaForwardProjectionAlgorithm3D::~CCudaForwardProjectionAlgorithm3D()
{
}
//---------------------------------------------------------------------------------------
// Initialize - Config
bool CCudaForwardProjectionAlgorithm3D::initialize(const Config& _cfg)
{
ASTRA_ASSERT(_cfg.self);
ConfigStackCheck CC("CudaForwardProjectionAlgorithm3D", this, _cfg);
XMLNode* node;
int id;
// sinogram data
node = _cfg.self->getSingleNode("ProjectionDataId");
ASTRA_CONFIG_CHECK(node, "CudaForwardProjection3D", "No ProjectionDataId tag specified.");
id = boost::lexical_cast(node->getContent());
m_pProjections = dynamic_cast(CData3DManager::getSingleton().get(id));
ASTRA_DELETE(node);
CC.markNodeParsed("ProjectionDataId");
// reconstruction data
node = _cfg.self->getSingleNode("VolumeDataId");
ASTRA_CONFIG_CHECK(node, "CudaForwardProjection3D", "No VolumeDataId tag specified.");
id = boost::lexical_cast(node->getContent());
m_pVolume = dynamic_cast(CData3DManager::getSingleton().get(id));
ASTRA_DELETE(node);
CC.markNodeParsed("VolumeDataId");
// optional: projector
node = _cfg.self->getSingleNode("ProjectorId");
if (node) {
id = boost::lexical_cast(node->getContent());
m_pProjector = CProjector3DManager::getSingleton().get(id);
ASTRA_DELETE(node);
} else {
m_pProjector = 0; // TODO: or manually construct default projector?
}
CC.markNodeParsed("ProjectorId");
// GPU number
m_iGPUIndex = (int)_cfg.self->getOptionNumerical("GPUindex", -1);
CC.markOptionParsed("GPUindex");
m_iDetectorSuperSampling = (int)_cfg.self->getOptionNumerical("DetectorSuperSampling", 1);
CC.markOptionParsed("DetectorSuperSampling");
// success
m_bIsInitialized = check();
if (!m_bIsInitialized)
return false;
return true;
}
bool CCudaForwardProjectionAlgorithm3D::initialize(CProjector3D* _pProjector,
CFloat32ProjectionData3DMemory* _pProjections,
CFloat32VolumeData3DMemory* _pVolume,
int _iGPUindex, int _iDetectorSuperSampling)
{
m_pProjector = _pProjector;
// required classes
m_pProjections = _pProjections;
m_pVolume = _pVolume;
m_iDetectorSuperSampling = _iDetectorSuperSampling;
m_iGPUIndex = _iGPUindex;
// success
m_bIsInitialized = check();
if (!m_bIsInitialized)
return false;
return true;
}
//----------------------------------------------------------------------------------------
// Check
bool CCudaForwardProjectionAlgorithm3D::check()
{
// check pointers
//ASTRA_CONFIG_CHECK(m_pProjector, "Reconstruction2D", "Invalid Projector Object.");
ASTRA_CONFIG_CHECK(m_pProjections, "FP3D_CUDA", "Invalid Projection Data Object.");
ASTRA_CONFIG_CHECK(m_pVolume, "FP3D_CUDA", "Invalid Volume Data Object.");
// check initializations
//ASTRA_CONFIG_CHECK(m_pProjector->isInitialized(), "Reconstruction2D", "Projector Object Not Initialized.");
ASTRA_CONFIG_CHECK(m_pProjections->isInitialized(), "FP3D_CUDA", "Projection Data Object Not Initialized.");
ASTRA_CONFIG_CHECK(m_pVolume->isInitialized(), "FP3D_CUDA", "Volume Data Object Not Initialized.");
ASTRA_CONFIG_CHECK(m_iDetectorSuperSampling >= 1, "FP3D_CUDA", "DetectorSuperSampling must be a positive integer.");
ASTRA_CONFIG_CHECK(m_iGPUIndex >= -1, "FP3D_CUDA", "GPUIndex must be a non-negative integer.");
// check compatibility between projector and data classes
// ASTRA_CONFIG_CHECK(m_pSinogram->getGeometry()->isEqual(m_pProjector->getProjectionGeometry()), "SIRT_CUDA", "Projection Data not compatible with the specified Projector.");
// ASTRA_CONFIG_CHECK(m_pReconstruction->getGeometry()->isEqual(m_pProjector->getVolumeGeometry()), "SIRT_CUDA", "Reconstruction Data not compatible with the specified Projector.");
// todo: turn some of these back on
// ASTRA_CONFIG_CHECK(m_pProjectionGeometry, "SIRT_CUDA", "ProjectionGeometry not specified.");
// ASTRA_CONFIG_CHECK(m_pProjectionGeometry->isInitialized(), "SIRT_CUDA", "ProjectionGeometry not initialized.");
// ASTRA_CONFIG_CHECK(m_pReconstructionGeometry, "SIRT_CUDA", "ReconstructionGeometry not specified.");
// ASTRA_CONFIG_CHECK(m_pReconstructionGeometry->isInitialized(), "SIRT_CUDA", "ReconstructionGeometry not initialized.");
// check dimensions
//ASTRA_CONFIG_CHECK(m_pSinogram->getAngleCount() == m_pProjectionGeometry->getProjectionAngleCount(), "SIRT_CUDA", "Sinogram data object size mismatch.");
//ASTRA_CONFIG_CHECK(m_pSinogram->getDetectorCount() == m_pProjectionGeometry->getDetectorCount(), "SIRT_CUDA", "Sinogram data object size mismatch.");
//ASTRA_CONFIG_CHECK(m_pReconstruction->getWidth() == m_pReconstructionGeometry->getGridColCount(), "SIRT_CUDA", "Reconstruction data object size mismatch.");
//ASTRA_CONFIG_CHECK(m_pReconstruction->getHeight() == m_pReconstructionGeometry->getGridRowCount(), "SIRT_CUDA", "Reconstruction data object size mismatch.");
// check restrictions
// TODO: check restrictions built into cuda code
// success
m_bIsInitialized = true;
return true;
}
void CCudaForwardProjectionAlgorithm3D::setGPUIndex(int _iGPUIndex)
{
m_iGPUIndex = _iGPUIndex;
}
//---------------------------------------------------------------------------------------
// Information - All
map CCudaForwardProjectionAlgorithm3D::getInformation()
{
map res;
res["ProjectionGeometry"] = getInformation("ProjectionGeometry");
res["VolumeGeometry"] = getInformation("VolumeGeometry");
res["ProjectionDataId"] = getInformation("ProjectionDataId");
res["VolumeDataId"] = getInformation("VolumeDataId");
res["GPUindex"] = getInformation("GPUindex");
res["GPUindex"] = getInformation("GPUindex");
res["DetectorSuperSampling"] = getInformation("DetectorSuperSampling");
return mergeMap(CAlgorithm::getInformation(), res);
}
//---------------------------------------------------------------------------------------
// Information - Specific
boost::any CCudaForwardProjectionAlgorithm3D::getInformation(std::string _sIdentifier)
{
// TODO: store these so we can return them?
if (_sIdentifier == "ProjectionGeometry") { return string("not implemented"); }
if (_sIdentifier == "VolumeGeometry") { return string("not implemented"); }
if (_sIdentifier == "GPUindex") { return m_iGPUIndex; }
if (_sIdentifier == "DetectorSuperSampling") { return m_iDetectorSuperSampling; }
if (_sIdentifier == "ProjectionDataId") {
int iIndex = CData3DManager::getSingleton().getIndex(m_pProjections);
if (iIndex != 0) return iIndex;
return std::string("not in manager");
}
if (_sIdentifier == "VolumeDataId") {
int iIndex = CData3DManager::getSingleton().getIndex(m_pVolume);
if (iIndex != 0) return iIndex;
return std::string("not in manager");
}
return CAlgorithm::getInformation(_sIdentifier);
}
//----------------------------------------------------------------------------------------
// Run
void CCudaForwardProjectionAlgorithm3D::run(int)
{
// check initialized
assert(m_bIsInitialized);
const CProjectionGeometry3D* projgeom = m_pProjections->getGeometry();
const CConeProjectionGeometry3D* conegeom = dynamic_cast(projgeom);
const CParallelProjectionGeometry3D* par3dgeom = dynamic_cast(projgeom);
const CConeVecProjectionGeometry3D* conevecgeom = dynamic_cast(projgeom);
const CParallelVecProjectionGeometry3D* parvec3dgeom = dynamic_cast(projgeom);
const CVolumeGeometry3D& volgeom = *m_pVolume->getGeometry();
Cuda3DProjectionKernel projKernel = ker3d_default;
if (m_pProjector) {
CCudaProjector3D* projector = dynamic_cast(m_pProjector);
projKernel = projector->getProjectionKernel();
}
#if 0
// Debugging code that gives the coordinates of the corners of the volume
// projected on the detector.
{
float fX[] = { volgeom.getWindowMinX(), volgeom.getWindowMaxX() };
float fY[] = { volgeom.getWindowMinY(), volgeom.getWindowMaxY() };
float fZ[] = { volgeom.getWindowMinZ(), volgeom.getWindowMaxZ() };
for (int a = 0; a < projgeom->getProjectionCount(); ++a)
for (int i = 0; i < 2; ++i)
for (int j = 0; j < 2; ++j)
for (int k = 0; k < 2; ++k) {
float fU, fV;
projgeom->projectPoint(fX[i], fY[j], fZ[k], a, fU, fV);
fprintf(stderr, "%3d %c1,%c1,%c1 -> %12f %12f\n", a, i ? ' ' : '-', j ? ' ' : '-', k ? ' ' : '-', fU, fV);
}
}
#endif
if (conegeom) {
astraCudaConeFP(m_pVolume->getDataConst(), m_pProjections->getData(),
volgeom.getGridColCount(),
volgeom.getGridRowCount(),
volgeom.getGridSliceCount(),
conegeom->getProjectionCount(),
conegeom->getDetectorColCount(),
conegeom->getDetectorRowCount(),
conegeom->getOriginSourceDistance(),
conegeom->getOriginDetectorDistance(),
conegeom->getDetectorSpacingX(),
conegeom->getDetectorSpacingY(),
conegeom->getProjectionAngles(),
m_iGPUIndex, m_iDetectorSuperSampling);
} else if (par3dgeom) {
astraCudaPar3DFP(m_pVolume->getDataConst(), m_pProjections->getData(),
volgeom.getGridColCount(),
volgeom.getGridRowCount(),
volgeom.getGridSliceCount(),
par3dgeom->getProjectionCount(),
par3dgeom->getDetectorColCount(),
par3dgeom->getDetectorRowCount(),
par3dgeom->getDetectorSpacingX(),
par3dgeom->getDetectorSpacingY(),
par3dgeom->getProjectionAngles(),
m_iGPUIndex, m_iDetectorSuperSampling,
projKernel);
} else if (parvec3dgeom) {
astraCudaPar3DFP(m_pVolume->getDataConst(), m_pProjections->getData(),
volgeom.getGridColCount(),
volgeom.getGridRowCount(),
volgeom.getGridSliceCount(),
parvec3dgeom->getProjectionCount(),
parvec3dgeom->getDetectorColCount(),
parvec3dgeom->getDetectorRowCount(),
parvec3dgeom->getProjectionVectors(),
m_iGPUIndex, m_iDetectorSuperSampling,
projKernel);
} else if (conevecgeom) {
astraCudaConeFP(m_pVolume->getDataConst(), m_pProjections->getData(),
volgeom.getGridColCount(),
volgeom.getGridRowCount(),
volgeom.getGridSliceCount(),
conevecgeom->getProjectionCount(),
conevecgeom->getDetectorColCount(),
conevecgeom->getDetectorRowCount(),
conevecgeom->getProjectionVectors(),
m_iGPUIndex, m_iDetectorSuperSampling);
} else {
ASTRA_ASSERT(false);
}
}
}
#endif