# ----------------------------------------------------------------------- # Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp # 2013-2016, CWI, Amsterdam # # Contact: astra@uantwerpen.be # Website: http://www.astra-toolbox.com/ # # This file is part of the ASTRA Toolbox. # # # The ASTRA Toolbox is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # The ASTRA Toolbox is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the ASTRA Toolbox. If not, see . # # ----------------------------------------------------------------------- # This example demonstrates using the FP and BP primitives with Matlab's lsqr # solver. Calls to FP (astra.create_sino) and # BP (astra.create_backprojection) are wrapped in a function astra_wrap, # and a handle to this function is passed to lsqr. # Because in this case the inputs/outputs of FP and BP have to be vectors # instead of images (matrices), the calls require reshaping to and from vectors. import astra import numpy as np # FP/BP wrapper class class astra_wrap(object): def __init__(self,proj_geom,vol_geom): self.proj_id = astra.create_projector('cuda',proj_geom,vol_geom) self.shape = (proj_geom['DetectorCount']*len(proj_geom['ProjectionAngles']),vol_geom['GridColCount']*vol_geom['GridRowCount']) self.dtype = np.float def matvec(self,v): sid, s = astra.create_sino(np.reshape(v,(vol_geom['GridRowCount'],vol_geom['GridColCount'])),self.proj_id) astra.data2d.delete(sid) return s.ravel() def rmatvec(self,v): bid, b = astra.create_backprojection(np.reshape(v,(len(proj_geom['ProjectionAngles']),proj_geom['DetectorCount'],)),self.proj_id) astra.data2d.delete(bid) return b.ravel() vol_geom = astra.create_vol_geom(256, 256) proj_geom = astra.create_proj_geom('parallel', 1.0, 384, np.linspace(0,np.pi,180,False)) # Create a 256x256 phantom image import scipy.io P = scipy.io.loadmat('phantom.mat')['phantom256'] # Create a sinogram using the GPU. proj_id = astra.create_projector('cuda',proj_geom,vol_geom) sinogram_id, sinogram = astra.create_sino(P, proj_id) # Reshape the sinogram into a vector b = sinogram.ravel() # Call lsqr with ASTRA FP and BP import scipy.sparse.linalg wrapper = astra_wrap(proj_geom,vol_geom) result = scipy.sparse.linalg.lsqr(wrapper,b,atol=1e-4,btol=1e-4,iter_lim=25) # Reshape the result into an image Y = np.reshape(result[0],(vol_geom['GridRowCount'], vol_geom['GridColCount'])); import pylab pylab.gray() pylab.imshow(Y) pylab.show() astra.data2d.delete(sinogram_id) astra.projector.delete(proj_id) astra.projector.delete(wrapper.proj_id)