# ----------------------------------------------------------------------- # Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp # 2013-2016, CWI, Amsterdam # # Contact: astra@astra-toolbox.com # Website: http://www.astra-toolbox.com/ # # This file is part of the ASTRA Toolbox. # # # The ASTRA Toolbox is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # The ASTRA Toolbox is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the ASTRA Toolbox. If not, see . # # ----------------------------------------------------------------------- import astra import numpy as np import six class SIRTPlugin(astra.plugin.base): """SIRT. Options: 'Relaxation': relaxation factor (optional) 'MinConstraint': constrain values to at least this (optional) 'MaxConstraint': constrain values to at most this (optional) """ astra_name = "SIRT-PLUGIN" def initialize(self,cfg, Relaxation = 1, MinConstraint = None, MaxConstraint = None): self.W = astra.OpTomo(cfg['ProjectorId']) self.vid = cfg['ReconstructionDataId'] self.sid = cfg['ProjectionDataId'] self.min_constraint = MinConstraint self.max_constraint = MaxConstraint try: v = astra.data2d.get_shared(self.vid) s = astra.data2d.get_shared(self.sid) self.data_mod = astra.data2d except Exception: v = astra.data3d.get_shared(self.vid) s = astra.data3d.get_shared(self.sid) self.data_mod = astra.data3d self.R = self.W * np.ones(v.shape,dtype=np.float32).ravel(); self.R[self.R < 0.000001] = np.Inf self.R = 1 / self.R self.R = self.R.reshape(s.shape) self.mrC = self.W.T * np.ones(s.shape,dtype=np.float32).ravel(); self.mrC[self.mrC < 0.000001] = np.Inf self.mrC = -Relaxation / self.mrC self.mrC = self.mrC.reshape(v.shape) def run(self, its): v = self.data_mod.get_shared(self.vid) s = self.data_mod.get_shared(self.sid) tv = np.zeros(v.shape, dtype=np.float32) ts = np.zeros(s.shape, dtype=np.float32) W = self.W mrC = self.mrC R = self.R for i in range(its): W.FP(v,out=ts) ts -= s ts *= R # ts = R * (W*v - s) W.BP(ts,out=tv) tv *= mrC v += tv # v = v - rel * C * W' * ts if self.min_constraint is not None or self.max_constraint is not None: v.clip(min=self.min_constraint, max=self.max_constraint, out=v)