/*
-----------------------------------------------------------------------
Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp
2014-2015, CWI, Amsterdam
Contact: astra@uantwerpen.be
Website: http://sf.net/projects/astra-toolbox
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
$Id$
*/
template
void CParallelBeamStripKernelProjector2D::project(Policy& p)
{
if (dynamic_cast(m_pProjectionGeometry)) {
projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(),
0, m_pProjectionGeometry->getDetectorCount(), p);
} else if (dynamic_cast(m_pProjectionGeometry)) {
projectBlock_internal_vector(0, m_pProjectionGeometry->getProjectionAngleCount(),
0, m_pProjectionGeometry->getDetectorCount(), p);
}
}
template
void CParallelBeamStripKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p)
{
if (dynamic_cast(m_pProjectionGeometry)) {
projectBlock_internal(_iProjection, _iProjection + 1,
0, m_pProjectionGeometry->getDetectorCount(), p);
} else if (dynamic_cast(m_pProjectionGeometry)) {
projectBlock_internal_vector(_iProjection, _iProjection + 1,
0, m_pProjectionGeometry->getDetectorCount(), p);
}
}
template
void CParallelBeamStripKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p)
{
if (dynamic_cast(m_pProjectionGeometry)) {
projectBlock_internal(_iProjection, _iProjection + 1,
_iDetector, _iDetector + 1, p);
} else if (dynamic_cast(m_pProjectionGeometry)) {
projectBlock_internal_vector(_iProjection, _iProjection + 1,
_iDetector, _iDetector + 1, p);
}
}
//----------------------------------------------------------------------------------------
// PROJECT BLOCK
template
void CParallelBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p)
{
ASTRA_ASSERT(m_bIsInitialized);
// Some variables
float32 theta, t;
int row, col;
int iAngle;
int iDetector;
float32 res;
float32 PL, PLimitL, PLimitR;
float32 xL, xR, XLimitL, XLimitR;
int x1L,x1R;
float32 x2L, x2R, updateX;
int iVolumeIndex, iRayIndex;
float32 sin_theta, cos_theta, inv_sin_theta, inv_cos_theta;
float32 fabs_sin_theta, fabs_cos_theta, fabs_inv_sin_theta, fabs_inv_cos_theta;
float32 PW, PH, DW, inv_PW, inv_PH;
float32 S, T, U, V, inv_4T;
// loop angles
for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) {
// get values
theta = m_pProjectionGeometry->getProjectionAngle(iAngle);
bool switch_t = false;
if (theta >= 7*PIdiv4) theta -= 2*PI;
if (theta >= 3*PIdiv4) {
theta -= PI;
switch_t = true;
}
// Precalculate sin, cos, 1/cos
sin_theta = sin(theta);
cos_theta = cos(theta);
inv_cos_theta = 1.0f / cos_theta;
inv_sin_theta = 1.0f / sin_theta;
fabs_sin_theta = (sin_theta < 0.0f) ? -sin_theta : sin_theta;
fabs_cos_theta = (cos_theta < 0.0f) ? -cos_theta : cos_theta;
fabs_inv_cos_theta = (inv_cos_theta < 0.0f) ? -inv_cos_theta : inv_cos_theta;
fabs_inv_sin_theta = (inv_sin_theta < 0.0f) ? -inv_sin_theta : inv_sin_theta;
// Other precalculations
PW = m_pVolumeGeometry->getPixelLengthX();
PH = m_pVolumeGeometry->getPixelLengthY();
DW = m_pProjectionGeometry->getDetectorWidth();
inv_PW = 1.0f / PW;
inv_PH = 1.0f / PH;
// [-45?,45?] and [135?,225?]
if (theta < PIdiv4) {
// Precalculate kernel limits
S = -0.5f * fabs_sin_theta * fabs_inv_cos_theta;
T = -S;
U = 1.0f + S;
V = 1.0f - S;
inv_4T = 0.25f / T;
updateX = sin_theta * inv_cos_theta;
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
// get t
t = m_pProjectionGeometry->indexToDetectorOffset(iDetector);
if (switch_t) t = -t;
// calculate left strip extremes (volume coordinates)
PL = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0) - DW*0.5f) * inv_cos_theta;
PLimitL = PL - 0.5f * fabs_sin_theta * fabs_inv_cos_theta * PH;
PLimitR = PLimitL + DW * inv_cos_theta + PH * fabs_sin_theta * fabs_inv_cos_theta;
// calculate strip extremes (pixel coordinates)
XLimitL = (PLimitL - m_pVolumeGeometry->getWindowMinX()) * inv_PW;
XLimitR = (PLimitR - m_pVolumeGeometry->getWindowMinX()) * inv_PW;
xL = (PL - m_pVolumeGeometry->getWindowMinX()) * inv_PW;
xR = xL + (DW * inv_cos_theta) * inv_PW;
// for each row
for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) {
// get strip extremes in column indices
x1L = int((XLimitL > 0.0f) ? XLimitL : XLimitL-1.0f);
x1R = int((XLimitR > 0.0f) ? XLimitR : XLimitR-1.0f);
// get coords w.r.t leftmost column hit by strip
x2L = xL - x1L;
x2R = xR - x1L;
// update strip extremes for the next row
XLimitL += updateX;
XLimitR += updateX;
xL += updateX;
xR += updateX;
// for each affected col
for (col = x1L; col <= x1R; ++col) {
if (col < 0 || col >= m_pVolumeGeometry->getGridColCount()) { x2L -= 1.0f; x2R -= 1.0f; continue; }
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR
if (!p.pixelPrior(iVolumeIndex)) { x2L -= 1.0f; x2R -= 1.0f; continue; }
// right
if (x2R >= V) res = 1.0f;
else if (x2R > U) res = x2R - (x2R-U)*(x2R-U)*inv_4T;
else if (x2R >= T) res = x2R;
else if (x2R > S) res = (x2R-S)*(x2R-S) * inv_4T;
else { x2L -= 1.0f; x2R -= 1.0f; continue; }
// left
if (x2L <= S) {} // - 0.0f
else if (x2L < T) res -= (x2L-S)*(x2L-S) * inv_4T;
else if (x2L <= U) res -= x2L;
else if (x2L < V) res -= x2L - (x2L-U)*(x2L-U)*inv_4T;
else { x2L -= 1.0f; x2R -= 1.0f; continue; }
// POLICY: ADD
p.addWeight(iRayIndex, iVolumeIndex, PW*PH * res);
// POLICY: PIXEL POSTERIOR
p.pixelPosterior(iVolumeIndex);
x2L -= 1.0f;
x2R -= 1.0f;
} // end col loop
} // end row loop
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
} // end detector loop
// [45?,135?] and [225?,315?]
// horizontaly
} else {
// Precalculate kernel limits
S = -0.5f * fabs_cos_theta * fabs_inv_sin_theta;
T = -S;
U = 1.0f + S;
V = 1.0f - S;
inv_4T = 0.25f / T;
updateX = cos_theta * inv_sin_theta;
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
// get t
t = m_pProjectionGeometry->indexToDetectorOffset(iDetector);
if (switch_t) t = -t;
// calculate left strip extremes (volume coordinates)
PL = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0) + DW*0.5f) * inv_sin_theta;
PLimitL = PL + 0.5f * fabs_cos_theta * fabs_inv_sin_theta * PW;
PLimitR = PLimitL - DW * inv_sin_theta - PH * fabs_cos_theta * fabs_inv_sin_theta;
// calculate strip extremes (pixel coordinates)
XLimitL = (m_pVolumeGeometry->getWindowMaxY() - PLimitL) * inv_PH;
XLimitR = (m_pVolumeGeometry->getWindowMaxY() - PLimitR) * inv_PH;
xL = (m_pVolumeGeometry->getWindowMaxY() - PL) * inv_PH;
xR = xL + (DW * fabs_inv_sin_theta) * inv_PH;
// for each col
for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) {
// get strip extremes in column indices
x1L = int((XLimitL > 0.0f) ? XLimitL : XLimitL-1.0f);
x1R = int((XLimitR > 0.0f) ? XLimitR : XLimitR-1.0f);
// get coords w.r.t leftmost column hit by strip
x2L = xL - x1L;
x2R = xR - x1L;
// update strip extremes for the next row
XLimitL += updateX;
XLimitR += updateX;
xL += updateX;
xR += updateX;
// for each affected col
for (row = x1L; row <= x1R; ++row) {
if (row < 0 || row >= m_pVolumeGeometry->getGridRowCount()) { x2L -= 1.0f; x2R -= 1.0f; continue; }
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col);
// POLICY: PIXEL PRIOR
if (!p.pixelPrior(iVolumeIndex)) { x2L -= 1.0f; x2R -= 1.0f; continue; }
// right
if (x2R >= V) res = 1.0f;
else if (x2R > U) res = x2R - (x2R-U)*(x2R-U)*inv_4T;
else if (x2R >= T) res = x2R;
else if (x2R > S) res = (x2R-S)*(x2R-S) * inv_4T;
else { x2L -= 1.0f; x2R -= 1.0f; continue; }
// left
if (x2L <= S) {} // - 0.0f
else if (x2L < T) res -= (x2L-S)*(x2L-S) * inv_4T;
else if (x2L <= U) res -= x2L;
else if (x2L < V) res -= x2L - (x2L-U)*(x2L-U)*inv_4T;
else { x2L -= 1.0f; x2R -= 1.0f; continue; }
// POLICY: ADD
p.addWeight(iRayIndex, iVolumeIndex, PW*PH * res);
// POLICY: PIXEL POSTERIOR
p.pixelPosterior(iVolumeIndex);
x2L -= 1.0f;
x2R -= 1.0f;
} // end row loop
} // end col loop
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
} // end detector loop
} // end theta switch
} // end angle loop
}
//----------------------------------------------------------------------------------------
// PROJECT BLOCK - vector projection geometry
template
void CParallelBeamStripKernelProjector2D::projectBlock_internal_vector(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p)
{
// variables
float32 detX, detY, detLX, detLY, detRX, detRY, S, T, update_c, update_r, offsetL, offsetR, invTminS;
float32 lengthPerRow, lengthPerCol, inv_pixelLengthX, inv_pixelLengthY, pixelArea;
int iVolumeIndex, iRayIndex, iRayIndexL, iRayIndexR, row, row_top, row_bottom, col, col_left, col_right, iAngle, iDetector, colCount, rowCount;
const SParProjection * proj = 0;
const CParallelVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry);
inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX();
inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY();
pixelArea = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY();
colCount = m_pVolumeGeometry->getGridColCount();
rowCount = m_pVolumeGeometry->getGridRowCount();
// loop angles
for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) {
proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle];
bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY);
if (vertical) {
S = 0.5f - 0.5f*fabs(proj->fRayX/proj->fRayY);
T = 0.5f + 0.5f*fabs(proj->fRayX/proj->fRayY);
update_c = -m_pVolumeGeometry->getPixelLengthY() * (proj->fRayX/proj->fRayY) * inv_pixelLengthX;
invTminS = 1.0f / (T-S);
} else {
S = 0.5f - 0.5f*fabs(proj->fRayY/proj->fRayX);
T = 0.5f + 0.5f*fabs(proj->fRayY/proj->fRayX);
update_r = -m_pVolumeGeometry->getPixelLengthX() * (proj->fRayY/proj->fRayX) * inv_pixelLengthY;
invTminS = 1.0f / (T-S);
}
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
detLX = proj->fDetSX + (iDetector+0.0f) * proj->fDetUX;
detLY = proj->fDetSY + (iDetector+0.0f) * proj->fDetUY;
detRX = detLX + proj->fDetUX;
detRY = detLY + proj->fDetUY;
// vertically
if (vertical) {
// calculate cL and cR for row 0
float32 xL = detLX + (proj->fRayX/proj->fRayY)*(m_pVolumeGeometry->pixelRowToCenterY(0)-detLY);
float32 cL = (xL - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX - 0.5f;
float32 xR = detRX + (proj->fRayX/proj->fRayY)*(m_pVolumeGeometry->pixelRowToCenterY(0)-detRY);
float32 cR = (xR - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX - 0.5f;
if (cR < cL) {
float32 tmp = cL;
cL = cR;
cR = tmp;
}
// for each row
for (row = 0; row < rowCount; ++row, cL += update_c, cR += update_c) {
col_left = int(cL-0.5f+S);
col_right = int(cR+1.5-S);
if (col_left < 0) col_left = 0;
if (col_right > colCount-1) col_right = colCount-1;
// for each column
for (col = col_left; col <= col_right; ++col) {
iVolumeIndex = row * colCount + col;
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
offsetL = cL - float32(col);
offsetR = cR - float32(col);
// right ray edge
float32 res = 0.0f;
if (T <= offsetR) res = 1.0f;
else if (S < offsetR) res = 1.0f - 0.5f*(T-offsetR)*(T-offsetR)*invTminS;
else if (-S < offsetR) res = 0.5f + offsetR;
else if (-T < offsetR) res = 0.5f*(offsetR+T)*(offsetR+T)*invTminS;
// left ray edge
if (T <= offsetL) res -= 1.0f;
else if (S < offsetL) res -= 1.0f - 0.5f*(T-offsetL)*(T-offsetL)*invTminS;
else if (-S < offsetL) res -= 0.5f + offsetL;
else if (-T < offsetL) res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS;
p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res);
p.pixelPosterior(iVolumeIndex);
}
}
}
}
// horizontally
else {
// calculate rL and rR for row 0
float32 yL = detLY + (proj->fRayY/proj->fRayX)*(m_pVolumeGeometry->pixelColToCenterX(0)-detLX);
float32 rL = (m_pVolumeGeometry->getWindowMaxY() - yL) * inv_pixelLengthY - 0.5f;
float32 yR = detRY + (proj->fRayY/proj->fRayX)*(m_pVolumeGeometry->pixelColToCenterX(0)-detRX);
float32 rR = (m_pVolumeGeometry->getWindowMaxY() - yR) * inv_pixelLengthY - 0.5f;
if (rR < rL) {
float32 tmp = rL;
rL = rR;
rR = tmp;
}
// for each column
for (col = 0; col < colCount; ++col, rL += update_r, rR += update_r) {
row_top = int(rL-0.5f+S);
row_bottom = int(rR+1.5-S);
if (row_top < 0) row_top = 0;
if (row_bottom > rowCount-1) row_bottom = rowCount-1;
// for each row
for (row = row_top; row <= row_bottom; ++row) {
iVolumeIndex = row * colCount + col;
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
offsetL = rL - float32(row);
offsetR = rR - float32(row);
// right ray edge
float32 res = 0.0f;
if (T <= offsetR) res = 1.0f;
else if (S < offsetR) res = 1.0f - 0.5f*(T-offsetR)*(T-offsetR)*invTminS;
else if (-S < offsetR) res = 0.5f + offsetR;
else if (-T < offsetR) res = 0.5f*(offsetR+T)*(offsetR+T)*invTminS;
// left ray edge
if (T <= offsetL) res -= 1.0f;
else if (S < offsetL) res -= 1.0f - 0.5f*(T-offsetL)*(T-offsetL)*invTminS;
else if (-S < offsetL) res -= 0.5f + offsetL;
else if (-T < offsetL) res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS;
p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res);
p.pixelPosterior(iVolumeIndex);
}
}
}
}
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
} // end loop detector
} // end loop angles
}