/*
-----------------------------------------------------------------------
Copyright 2012 iMinds-Vision Lab, University of Antwerp
Contact: astra@ua.ac.be
Website: http://astra.ua.ac.be
This file is part of the
All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
$Id$
*/
#include
#include
#include
#include
#include "util.h"
#include "arith.h"
#ifdef STANDALONE
#include "testutil.h"
#endif
#define PIXELTRACE
typedef texture texture2D;
static texture2D gT_volumeTexture;
namespace astraCUDA {
static const unsigned g_MaxAngles = 2560;
__constant__ float gC_angle[g_MaxAngles];
__constant__ float gC_angle_offset[g_MaxAngles];
// optimization parameters
static const unsigned int g_anglesPerBlock = 16;
static const unsigned int g_detBlockSize = 32;
static const unsigned int g_blockSlices = 64;
// fixed point scaling factor
#define fPREC_FACTOR 16.0f
#define iPREC_FACTOR 16
// if necessary, a buffer of zeroes of size g_MaxAngles
static float* g_pfZeroes = 0;
static bool bindVolumeDataTexture(float* data, cudaArray*& dataArray, unsigned int pitch, unsigned int width, unsigned int height)
{
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc();
dataArray = 0;
cudaMallocArray(&dataArray, &channelDesc, width, height);
cudaMemcpy2DToArray(dataArray, 0, 0, data, pitch*sizeof(float), width*sizeof(float), height, cudaMemcpyDeviceToDevice);
gT_volumeTexture.addressMode[0] = cudaAddressModeClamp;
gT_volumeTexture.addressMode[1] = cudaAddressModeClamp;
gT_volumeTexture.filterMode = cudaFilterModeLinear;
gT_volumeTexture.normalized = false;
// TODO: For very small sizes (roughly <=512x128) with few angles (<=180)
// not using an array is more efficient.
// cudaBindTexture2D(0, gT_volumeTexture, (const void*)data, channelDesc, width, height, sizeof(float)*pitch);
cudaBindTextureToArray(gT_volumeTexture, dataArray, channelDesc);
// TODO: error value?
return true;
}
// projection for angles that are roughly horizontal
// theta between 45 and 135 degrees
__global__ void FPhorizontal(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, int regionOffset, const SDimensions dims, float outputScale)
{
const int relDet = threadIdx.x;
const int relAngle = threadIdx.y;
int angle = startAngle + blockIdx.x * g_anglesPerBlock + relAngle;
if (angle >= endAngle)
return;
const float theta = gC_angle[angle];
const float cos_theta = __cosf(theta);
const float sin_theta = __sinf(theta);
// compute start detector for this block/angle:
// (The same for all threadIdx.x)
// -------------------------------------
const int midSlice = startSlice + g_blockSlices / 2;
// ASSUMPTION: fDetScale >= 1.0f
// problem: detector regions get skipped because slice blocks aren't large
// enough
const unsigned int g_blockSliceSize = g_detBlockSize;
// project (midSlice,midRegion) on this thread's detector
const float fBase = 0.5f*dims.iProjDets - 0.5f +
(
(midSlice - 0.5f*dims.iVolWidth + 0.5f) * cos_theta
- (g_blockSliceSize/2 - 0.5f*dims.iVolHeight + 0.5f) * sin_theta
+ gC_angle_offset[angle]
) / dims.fDetScale;
int iBase = (int)floorf(fBase * fPREC_FACTOR);
int iInc = (int)floorf(g_blockSliceSize * sin_theta / dims.fDetScale * -fPREC_FACTOR);
// ASSUMPTION: 16 > regionOffset / fDetScale
const int detRegion = (iBase + (blockIdx.y - regionOffset)*iInc + 16*iPREC_FACTOR*g_detBlockSize) / (iPREC_FACTOR * g_detBlockSize) - 16;
const int detPrevRegion = (iBase + (blockIdx.y - regionOffset - 1)*iInc + 16*iPREC_FACTOR*g_detBlockSize) / (iPREC_FACTOR * g_detBlockSize) - 16;
if (blockIdx.y > 0 && detRegion == detPrevRegion)
return;
const int detector = detRegion * g_detBlockSize + relDet;
// Now project the part of the ray to angle,detector through
// slices startSlice to startSlice+g_blockSlices-1
if (detector < 0 || detector >= dims.iProjDets)
return;
const float fDetStep = -dims.fDetScale / sin_theta;
float fSliceStep = cos_theta / sin_theta;
float fDistCorr;
if (sin_theta > 0.0f)
fDistCorr = -fDetStep;
else
fDistCorr = fDetStep;
fDistCorr *= outputScale;
float fVal = 0.0f;
// project detector on slice
float fP = (detector - 0.5f*dims.iProjDets + 0.5f - gC_angle_offset[angle]) * fDetStep + (startSlice - 0.5f*dims.iVolWidth + 0.5f) * fSliceStep + 0.5f*dims.iVolHeight - 0.5f + 1.5f;
float fS = startSlice + 1.5f;
int endSlice = startSlice + g_blockSlices;
if (endSlice > dims.iVolWidth)
endSlice = dims.iVolWidth;
if (dims.iRaysPerDet > 1) {
fP += (-0.5f*dims.iRaysPerDet + 0.5f)/dims.iRaysPerDet * fDetStep;
const float fSubDetStep = fDetStep / dims.iRaysPerDet;
fDistCorr /= dims.iRaysPerDet;
fSliceStep -= dims.iRaysPerDet * fSubDetStep;
for (int slice = startSlice; slice < endSlice; ++slice)
{
for (int iSubT = 0; iSubT < dims.iRaysPerDet; ++iSubT) {
fVal += tex2D(gT_volumeTexture, fS, fP);
fP += fSubDetStep;
}
fP += fSliceStep;
fS += 1.0f;
}
} else {
for (int slice = startSlice; slice < endSlice; ++slice)
{
fVal += tex2D(gT_volumeTexture, fS, fP);
fP += fSliceStep;
fS += 1.0f;
}
}
D_projData[angle*projPitch+detector+1] += fVal * fDistCorr;
}
// projection for angles that are roughly vertical
// theta between 0 and 45, or 135 and 180 degrees
__global__ void FPvertical(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, int regionOffset, const SDimensions dims, float outputScale)
{
const int relDet = threadIdx.x;
const int relAngle = threadIdx.y;
int angle = startAngle + blockIdx.x * g_anglesPerBlock + relAngle;
if (angle >= endAngle)
return;
const float theta = gC_angle[angle];
const float cos_theta = __cosf(theta);
const float sin_theta = __sinf(theta);
// compute start detector for this block/angle:
// (The same for all threadIdx.x)
// -------------------------------------
const int midSlice = startSlice + g_blockSlices / 2;
// project (midSlice,midRegion) on this thread's detector
// ASSUMPTION: fDetScale >= 1.0f
// problem: detector regions get skipped because slice blocks aren't large
// enough
const unsigned int g_blockSliceSize = g_detBlockSize;
const float fBase = 0.5f*dims.iProjDets - 0.5f +
(
(g_blockSliceSize/2 - 0.5f*dims.iVolWidth + 0.5f) * cos_theta
- (midSlice - 0.5f*dims.iVolHeight + 0.5f) * sin_theta
+ gC_angle_offset[angle]
) / dims.fDetScale;
int iBase = (int)floorf(fBase * fPREC_FACTOR);
int iInc = (int)floorf(g_blockSliceSize * cos_theta / dims.fDetScale * fPREC_FACTOR);
// ASSUMPTION: 16 > regionOffset / fDetScale
const int detRegion = (iBase + (blockIdx.y - regionOffset)*iInc + 16*iPREC_FACTOR*g_detBlockSize) / (iPREC_FACTOR * g_detBlockSize) - 16;
const int detPrevRegion = (iBase + (blockIdx.y - regionOffset-1)*iInc + 16*iPREC_FACTOR*g_detBlockSize) / (iPREC_FACTOR * g_detBlockSize) - 16;
if (blockIdx.y > 0 && detRegion == detPrevRegion)
return;
const int detector = detRegion * g_detBlockSize + relDet;
// Now project the part of the ray to angle,detector through
// slices startSlice to startSlice+g_blockSlices-1
if (detector < 0 || detector >= dims.iProjDets)
return;
const float fDetStep = dims.fDetScale / cos_theta;
float fSliceStep = sin_theta / cos_theta;
float fDistCorr;
if (cos_theta < 0.0f)
fDistCorr = -fDetStep;
else
fDistCorr = fDetStep;
fDistCorr *= outputScale;
float fVal = 0.0f;
float fP = (detector - 0.5f*dims.iProjDets + 0.5f - gC_angle_offset[angle]) * fDetStep + (startSlice - 0.5f*dims.iVolHeight + 0.5f) * fSliceStep + 0.5f*dims.iVolWidth - 0.5f + 1.5f;
float fS = startSlice+1.5f;
int endSlice = startSlice + g_blockSlices;
if (endSlice > dims.iVolHeight)
endSlice = dims.iVolHeight;
if (dims.iRaysPerDet > 1) {
fP += (-0.5f*dims.iRaysPerDet + 0.5f)/dims.iRaysPerDet * fDetStep;
const float fSubDetStep = fDetStep / dims.iRaysPerDet;
fDistCorr /= dims.iRaysPerDet;
fSliceStep -= dims.iRaysPerDet * fSubDetStep;
for (int slice = startSlice; slice < endSlice; ++slice)
{
for (int iSubT = 0; iSubT < dims.iRaysPerDet; ++iSubT) {
fVal += tex2D(gT_volumeTexture, fP, fS);
fP += fSubDetStep;
}
fP += fSliceStep;
fS += 1.0f;
}
} else {
for (int slice = startSlice; slice < endSlice; ++slice)
{
fVal += tex2D(gT_volumeTexture, fP, fS);
fP += fSliceStep;
fS += 1.0f;
}
}
D_projData[angle*projPitch+detector+1] += fVal * fDistCorr;
}
// projection for angles that are roughly horizontal
// (detector roughly vertical)
__global__ void FPhorizontal_simple(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions dims, float outputScale)
{
const int relDet = threadIdx.x;
const int relAngle = threadIdx.y;
int angle = startAngle + blockIdx.x * g_anglesPerBlock + relAngle;
if (angle >= endAngle)
return;
const float theta = gC_angle[angle];
const float cos_theta = __cosf(theta);
const float sin_theta = __sinf(theta);
// compute start detector for this block/angle:
const int detRegion = blockIdx.y;
const int detector = detRegion * g_detBlockSize + relDet;
// Now project the part of the ray to angle,detector through
// slices startSlice to startSlice+g_blockSlices-1
if (detector < 0 || detector >= dims.iProjDets)
return;
const float fDetStep = -dims.fDetScale / sin_theta;
float fSliceStep = cos_theta / sin_theta;
float fDistCorr;
if (sin_theta > 0.0f)
fDistCorr = -fDetStep;
else
fDistCorr = fDetStep;
fDistCorr *= outputScale;
float fVal = 0.0f;
// project detector on slice
float fP = (detector - 0.5f*dims.iProjDets + 0.5f - gC_angle_offset[angle]) * fDetStep + (startSlice - 0.5f*dims.iVolWidth + 0.5f) * fSliceStep + 0.5f*dims.iVolHeight - 0.5f + 1.5f;
float fS = startSlice + 1.5f;
int endSlice = startSlice + g_blockSlices;
if (endSlice > dims.iVolWidth)
endSlice = dims.iVolWidth;
if (dims.iRaysPerDet > 1) {
fP += (-0.5f*dims.iRaysPerDet + 0.5f)/dims.iRaysPerDet * fDetStep;
const float fSubDetStep = fDetStep / dims.iRaysPerDet;
fDistCorr /= dims.iRaysPerDet;
fSliceStep -= dims.iRaysPerDet * fSubDetStep;
for (int slice = startSlice; slice < endSlice; ++slice)
{
for (int iSubT = 0; iSubT < dims.iRaysPerDet; ++iSubT) {
fVal += tex2D(gT_volumeTexture, fS, fP);
fP += fSubDetStep;
}
fP += fSliceStep;
fS += 1.0f;
}
} else {
for (int slice = startSlice; slice < endSlice; ++slice)
{
fVal += tex2D(gT_volumeTexture, fS, fP);
fP += fSliceStep;
fS += 1.0f;
}
}
D_projData[angle*projPitch+detector+1] += fVal * fDistCorr;
}
// projection for angles that are roughly vertical
// (detector roughly horizontal)
__global__ void FPvertical_simple(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions dims, float outputScale)
{
const int relDet = threadIdx.x;
const int relAngle = threadIdx.y;
int angle = startAngle + blockIdx.x * g_anglesPerBlock + relAngle;
if (angle >= endAngle)
return;
const float theta = gC_angle[angle];
const float cos_theta = __cosf(theta);
const float sin_theta = __sinf(theta);
// compute start detector for this block/angle:
const int detRegion = blockIdx.y;
const int detector = detRegion * g_detBlockSize + relDet;
// Now project the part of the ray to angle,detector through
// slices startSlice to startSlice+g_blockSlices-1
if (detector < 0 || detector >= dims.iProjDets)
return;
const float fDetStep = dims.fDetScale / cos_theta;
float fSliceStep = sin_theta / cos_theta;
float fDistCorr;
if (cos_theta < 0.0f)
fDistCorr = -fDetStep;
else
fDistCorr = fDetStep;
fDistCorr *= outputScale;
float fVal = 0.0f;
float fP = (detector - 0.5f*dims.iProjDets + 0.5f - gC_angle_offset[angle]) * fDetStep + (startSlice - 0.5f*dims.iVolHeight + 0.5f) * fSliceStep + 0.5f*dims.iVolWidth - 0.5f + 1.5f;
float fS = startSlice+1.5f;
int endSlice = startSlice + g_blockSlices;
if (endSlice > dims.iVolHeight)
endSlice = dims.iVolHeight;
if (dims.iRaysPerDet > 1) {
fP += (-0.5f*dims.iRaysPerDet + 0.5f)/dims.iRaysPerDet * fDetStep;
const float fSubDetStep = fDetStep / dims.iRaysPerDet;
fDistCorr /= dims.iRaysPerDet;
fSliceStep -= dims.iRaysPerDet * fSubDetStep;
for (int slice = startSlice; slice < endSlice; ++slice)
{
for (int iSubT = 0; iSubT < dims.iRaysPerDet; ++iSubT) {
fVal += tex2D(gT_volumeTexture, fP, fS);
fP += fSubDetStep;
}
fP += fSliceStep;
fS += 1.0f;
}
} else {
for (int slice = startSlice; slice < endSlice; ++slice)
{
fVal += tex2D(gT_volumeTexture, fP, fS);
fP += fSliceStep;
fS += 1.0f;
}
}
D_projData[angle*projPitch+detector+1] += fVal * fDistCorr;
}
bool FP_simple(float* D_volumeData, unsigned int volumePitch,
float* D_projData, unsigned int projPitch,
const SDimensions& dims, const float* angles,
const float* TOffsets, float outputScale)
{
// TODO: load angles into constant memory in smaller blocks
assert(dims.iProjAngles <= g_MaxAngles);
cudaArray* D_dataArray;
bindVolumeDataTexture(D_volumeData, D_dataArray, volumePitch, dims.iVolWidth+2, dims.iVolHeight+2);
cudaMemcpyToSymbol(gC_angle, angles, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
if (TOffsets) {
cudaMemcpyToSymbol(gC_angle_offset, TOffsets, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
} else {
if (!g_pfZeroes) {
g_pfZeroes = new float[g_MaxAngles];
memset(g_pfZeroes, 0, g_MaxAngles * sizeof(float));
}
cudaMemcpyToSymbol(gC_angle_offset, g_pfZeroes, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
}
dim3 dimBlock(g_detBlockSize, g_anglesPerBlock); // detector block size, angles
std::list streams;
// Run over all angles, grouping them into groups of the same
// orientation (roughly horizontal vs. roughly vertical).
// Start a stream of grids for each such group.
// TODO: Check if it's worth it to store this info instead
// of recomputing it every FP.
unsigned int blockStart = 0;
unsigned int blockEnd = 0;
bool blockVertical = false;
for (unsigned int a = 0; a <= dims.iProjAngles; ++a) {
bool vertical;
// TODO: Having <= instead of < below causes a 5% speedup.
// Maybe we should detect corner cases and put them in the optimal
// group of angles.
if (a != dims.iProjAngles)
vertical = (fabsf(sinf(angles[a])) <= fabsf(cosf(angles[a])));
if (a == dims.iProjAngles || vertical != blockVertical) {
// block done
blockEnd = a;
if (blockStart != blockEnd) {
dim3 dimGrid((blockEnd-blockStart+g_anglesPerBlock-1)/g_anglesPerBlock,
(dims.iProjDets+g_detBlockSize-1)/g_detBlockSize); // angle blocks, detector blocks
// TODO: check if we can't immediately
// destroy the stream after use
cudaStream_t stream;
cudaStreamCreate(&stream);
streams.push_back(stream);
//printf("angle block: %d to %d, %d\n", blockStart, blockEnd, blockVertical);
if (!blockVertical)
for (unsigned int i = 0; i < dims.iVolWidth; i += g_blockSlices)
FPhorizontal_simple<<>>(D_projData, projPitch, i, blockStart, blockEnd, dims, outputScale);
else
for (unsigned int i = 0; i < dims.iVolHeight; i += g_blockSlices)
FPvertical_simple<<>>(D_projData, projPitch, i, blockStart, blockEnd, dims, outputScale);
}
blockVertical = vertical;
blockStart = a;
}
}
for (std::list::iterator iter = streams.begin(); iter != streams.end(); ++iter)
cudaStreamDestroy(*iter);
streams.clear();
cudaThreadSynchronize();
cudaTextForceKernelsCompletion();
cudaFreeArray(D_dataArray);
return true;
}
bool FP(float* D_volumeData, unsigned int volumePitch,
float* D_projData, unsigned int projPitch,
const SDimensions& dims, const float* angles,
const float* TOffsets, float outputScale)
{
return FP_simple(D_volumeData, volumePitch, D_projData, projPitch,
dims, angles, TOffsets, outputScale);
// TODO: Fix bug in this non-simple FP with large detscale and TOffsets
#if 0
// TODO: load angles into constant memory in smaller blocks
assert(dims.iProjAngles <= g_MaxAngles);
// TODO: compute region size dynamically to resolve these two assumptions
// ASSUMPTION: 16 > regionOffset / fDetScale
const unsigned int g_blockSliceSize = g_detBlockSize;
assert(16 > (g_blockSlices / g_blockSliceSize) / dims.fDetScale);
// ASSUMPTION: fDetScale >= 1.0f
assert(dims.fDetScale > 0.9999f);
cudaArray* D_dataArray;
bindVolumeDataTexture(D_volumeData, D_dataArray, volumePitch, dims.iVolWidth+2, dims.iVolHeight+2);
cudaMemcpyToSymbol(gC_angle, angles, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
if (TOffsets) {
cudaMemcpyToSymbol(gC_angle_offset, TOffsets, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
} else {
if (!g_pfZeroes) {
g_pfZeroes = new float[g_MaxAngles];
memset(g_pfZeroes, 0, g_MaxAngles * sizeof(float));
}
cudaMemcpyToSymbol(gC_angle_offset, g_pfZeroes, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
}
int regionOffset = g_blockSlices / g_blockSliceSize;
dim3 dimBlock(g_detBlockSize, g_anglesPerBlock); // region size, angles
std::list streams;
// Run over all angles, grouping them into groups of the same
// orientation (roughly horizontal vs. roughly vertical).
// Start a stream of grids for each such group.
// TODO: Check if it's worth it to store this info instead
// of recomputing it every FP.
unsigned int blockStart = 0;
unsigned int blockEnd = 0;
bool blockVertical = false;
for (unsigned int a = 0; a <= dims.iProjAngles; ++a) {
bool vertical;
// TODO: Having <= instead of < below causes a 5% speedup.
// Maybe we should detect corner cases and put them in the optimal
// group of angles.
if (a != dims.iProjAngles)
vertical = (fabsf(sinf(angles[a])) <= fabsf(cosf(angles[a])));
if (a == dims.iProjAngles || vertical != blockVertical) {
// block done
blockEnd = a;
if (blockStart != blockEnd) {
unsigned int length = dims.iVolHeight;
if (blockVertical)
length = dims.iVolWidth;
dim3 dimGrid((blockEnd-blockStart+g_anglesPerBlock-1)/g_anglesPerBlock,
(length+g_blockSliceSize-1)/g_blockSliceSize+2*regionOffset); // angle blocks, regions
// TODO: check if we can't immediately
// destroy the stream after use
cudaStream_t stream;
cudaStreamCreate(&stream);
streams.push_back(stream);
//printf("angle block: %d to %d, %d\n", blockStart, blockEnd, blockVertical);
if (!blockVertical)
for (unsigned int i = 0; i < dims.iVolWidth; i += g_blockSlices)
FPhorizontal<<>>(D_projData, projPitch, i, blockStart, blockEnd, regionOffset, dims, outputScale);
else
for (unsigned int i = 0; i < dims.iVolHeight; i += g_blockSlices)
FPvertical<<>>(D_projData, projPitch, i, blockStart, blockEnd, regionOffset, dims, outputScale);
}
blockVertical = vertical;
blockStart = a;
}
}
for (std::list::iterator iter = streams.begin(); iter != streams.end(); ++iter)
cudaStreamDestroy(*iter);
streams.clear();
cudaThreadSynchronize();
cudaTextForceKernelsCompletion();
cudaFreeArray(D_dataArray);
return true;
#endif
}
}
#ifdef STANDALONE
using namespace astraCUDA;
int main()
{
float* D_volumeData;
float* D_projData;
SDimensions dims;
dims.iVolWidth = 1024;
dims.iVolHeight = 1024;
dims.iProjAngles = 512;
dims.iProjDets = 1536;
dims.fDetScale = 1.0f;
dims.iRaysPerDet = 1;
unsigned int volumePitch, projPitch;
allocateVolume(D_volumeData, dims.iVolWidth+2, dims.iVolHeight+2, volumePitch);
printf("pitch: %u\n", volumePitch);
allocateVolume(D_projData, dims.iProjDets+2, dims.iProjAngles, projPitch);
printf("pitch: %u\n", projPitch);
unsigned int y, x;
float* img = loadImage("phantom.png", y, x);
float* sino = new float[dims.iProjAngles * dims.iProjDets];
memset(sino, 0, dims.iProjAngles * dims.iProjDets * sizeof(float));
copyVolumeToDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
float* angle = new float[dims.iProjAngles];
for (unsigned int i = 0; i < dims.iProjAngles; ++i)
angle[i] = i*(M_PI/dims.iProjAngles);
FP(D_volumeData, volumePitch, D_projData, projPitch, dims, angle, 0, 1.0f);
delete[] angle;
copySinogramFromDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
float s = 0.0f;
for (unsigned int y = 0; y < dims.iProjAngles; ++y)
for (unsigned int x = 0; x < dims.iProjDets; ++x)
s += sino[y*dims.iProjDets+x] * sino[y*dims.iProjDets+x];
printf("cpu norm: %f\n", s);
//zeroVolume(D_projData, projPitch, dims.iProjDets+2, dims.iProjAngles);
s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles, 1, 0);
printf("gpu norm: %f\n", s);
saveImage("sino.png",dims.iProjAngles,dims.iProjDets,sino);
return 0;
}
#endif