diff options
author | Willem Jan Palenstijn <WillemJan.Palenstijn@uantwerpen.be> | 2013-07-01 22:34:11 +0000 |
---|---|---|
committer | wpalenst <WillemJan.Palenstijn@uantwerpen.be> | 2013-07-01 22:34:11 +0000 |
commit | b2fc6c70434674d74551c3a6c01ffb3233499312 (patch) | |
tree | b17f080ebc504ab85ebb7c3d89f917fd87ce9e00 /src/Fourier.cpp | |
download | astra-b2fc6c70434674d74551c3a6c01ffb3233499312.tar.gz astra-b2fc6c70434674d74551c3a6c01ffb3233499312.tar.bz2 astra-b2fc6c70434674d74551c3a6c01ffb3233499312.tar.xz astra-b2fc6c70434674d74551c3a6c01ffb3233499312.zip |
Update version to 1.3
Diffstat (limited to 'src/Fourier.cpp')
-rw-r--r-- | src/Fourier.cpp | 233 |
1 files changed, 233 insertions, 0 deletions
diff --git a/src/Fourier.cpp b/src/Fourier.cpp new file mode 100644 index 0000000..0f7da28 --- /dev/null +++ b/src/Fourier.cpp @@ -0,0 +1,233 @@ +/* +----------------------------------------------------------------------- +Copyright 2012 iMinds-Vision Lab, University of Antwerp + +Contact: astra@ua.ac.be +Website: http://astra.ua.ac.be + + +This file is part of the +All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). + +The ASTRA Toolbox is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version. + +The ASTRA Toolbox is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. + +----------------------------------------------------------------------- +$Id$ +*/ + +#include "astra/Fourier.h" + +namespace astra { + + +void discreteFourierTransform1D(unsigned int iLength, + const float32* pfRealIn, + const float32* pfImaginaryIn, + float32* pfRealOut, + float32* pfImaginaryOut, + unsigned int iStrideIn, + unsigned int iStrideOut, + bool inverse) +{ + for (unsigned int w = 0; w < iLength; w++) + { + pfRealOut[iStrideOut*w] = pfImaginaryOut[iStrideOut*w] = 0; + for (unsigned int y = 0; y < iLength; y++) + { + float32 a = 2 * PI * w * y / float32(iLength); + if (!inverse) + a = -a; + float32 ca = cos(a); + float32 sa = sin(a); + pfRealOut[iStrideOut*w] += pfRealIn[iStrideIn*y] * ca - pfImaginaryIn[iStrideIn*y] * sa; + pfImaginaryOut[iStrideOut*w] += pfRealIn[iStrideIn*y] * sa + pfImaginaryIn[iStrideIn*y] * ca; + } + } + + if (inverse) { + for (unsigned int x = 0; x < iLength; ++x) { + pfRealOut[iStrideOut*x] /= iLength; + pfImaginaryOut[iStrideOut*x] /= iLength; + } + } +} + +void discreteFourierTransform2D(unsigned int iHeight, unsigned int iWidth, + const float32* pfRealIn, + const float32* pfImaginaryIn, + float32* pfRealOut, + float32* pfImaginaryOut, + bool inverse) +{ + float32* reTemp = new float32[iWidth * iHeight]; + float32* imTemp = new float32[iWidth * iHeight]; + + //calculate the fourier transform of the columns + for (unsigned int x = 0; x < iWidth; x++) + { + discreteFourierTransform1D(iHeight, pfRealIn+x, pfImaginaryIn+x, + reTemp+x, imTemp+x, + iWidth, iWidth, inverse); + } + + //calculate the fourier transform of the rows + for(unsigned int y = 0; y < iHeight; y++) + { + discreteFourierTransform1D(iWidth, + reTemp+y*iWidth, + imTemp+y*iWidth, + pfRealOut+y*iWidth, + pfImaginaryOut+y*iWidth, + 1, 1, inverse); + } + + delete[] reTemp; + delete[] imTemp; +} + +/** permute the entries from pfDataIn into pfDataOut to prepare for an + * in-place FFT. pfDataIn may be equal to pfDataOut. + */ +static void bitReverse(unsigned int iLength, + const float32* pfDataIn, float32* pfDataOut, + unsigned int iStrideShiftIn, + unsigned int iStrideShiftOut) +{ + if (pfDataIn == pfDataOut) { + assert(iStrideShiftIn == iStrideShiftOut); + float32 t; + unsigned int j = 0; + for(unsigned int i = 0; i < iLength - 1; i++) { + if (i < j) { + t = pfDataOut[i<<iStrideShiftOut]; + pfDataOut[i<<iStrideShiftOut] = pfDataOut[j<<iStrideShiftOut]; + pfDataOut[j<<iStrideShiftOut] = t; + } + unsigned int k = iLength / 2; + while (k <= j) { + j -= k; + k /= 2; + } + j += k; + } + } else { + unsigned int j = 0; + for(unsigned int i = 0; i < iLength - 1; i++) { + pfDataOut[i<<iStrideShiftOut] = pfDataIn[j<<iStrideShiftIn]; + unsigned int k = iLength / 2; + while (k <= j) { + j -= k; + k /= 2; + } + j += k; + } + pfDataOut[(iLength-1)<<iStrideShiftOut] = pfDataIn[(iLength-1)<<iStrideShiftOut]; + } +} + +static unsigned int log2(unsigned int n) +{ + unsigned int l = 0; + while (n > 1) { + n /= 2; + ++l; + } + return l; +} + +/** perform 1D FFT. iLength, iStrideIn, iStrideOut must be powers of two. */ +void fastTwoPowerFourierTransform1D(unsigned int iLength, + const float32* pfRealIn, + const float32* pfImaginaryIn, + float32* pfRealOut, + float32* pfImaginaryOut, + unsigned int iStrideIn, + unsigned int iStrideOut, + bool inverse) +{ + unsigned int iStrideShiftIn = log2(iStrideIn); + unsigned int iStrideShiftOut = log2(iStrideOut); + unsigned int iLogLength = log2(iLength); + + bitReverse(iLength, pfRealIn, pfRealOut, iStrideShiftIn, iStrideShiftOut); + bitReverse(iLength, pfImaginaryIn, pfImaginaryOut, iStrideShiftIn, iStrideShiftOut); + + float32 ca = -1.0; + float32 sa = 0.0; + unsigned int l1 = 1, l2 = 1; + for(unsigned int l=0; l < iLogLength; ++l) + { + l1 = l2; + l2 *= 2; + float32 u1 = 1.0; + float32 u2 = 0.0; + for(unsigned int j = 0; j < l1; j++) + { + for(unsigned int i = j; i < iLength; i += l2) + { + unsigned int i1 = i + l1; + float32 t1 = u1 * pfRealOut[i1<<iStrideShiftOut] - u2 * pfImaginaryOut[i1<<iStrideShiftOut]; + float32 t2 = u1 * pfImaginaryOut[i1<<iStrideShiftOut] + u2 * pfRealOut[i1<<iStrideShiftOut]; + pfRealOut[i1<<iStrideShiftOut] = pfRealOut[i<<iStrideShiftOut] - t1; + pfImaginaryOut[i1<<iStrideShiftOut] = pfImaginaryOut[i<<iStrideShiftOut] - t2; + pfRealOut[i<<iStrideShiftOut] += t1; + pfImaginaryOut[i<<iStrideShiftOut] += t2; + } + float32 z = u1 * ca - u2 * sa; + u2 = u1 * sa + u2 * ca; + u1 = z; + } + sa = sqrt((1.0 - ca) / 2.0); + if (!inverse) + sa = -sa; + ca = sqrt((1.0 + ca) / 2.0); + } + + if (inverse) { + for (unsigned int i = 0; i < iLength; ++i) { + pfRealOut[i<<iStrideShiftOut] /= iLength; + pfImaginaryOut[i<<iStrideShiftOut] /= iLength; + } + } +} + +void fastTwoPowerFourierTransform2D(unsigned int iHeight, + unsigned int iWidth, + const float32* pfRealIn, + const float32* pfImaginaryIn, + float32* pfRealOut, + float32* pfImaginaryOut, + bool inverse) +{ + //calculate the fourier transform of the columns + for (unsigned int x = 0; x < iWidth; x++) + { + fastTwoPowerFourierTransform1D(iHeight, pfRealIn+x, pfImaginaryIn+x, + pfRealOut+x, pfImaginaryOut+x, + iWidth, iWidth, inverse); + } + + //calculate the fourier transform of the rows + for (unsigned int y = 0; y < iHeight; y++) + { + fastTwoPowerFourierTransform1D(iWidth, + pfRealOut+y*iWidth, + pfImaginaryOut+y*iWidth, + pfRealOut+y*iWidth, + pfImaginaryOut+y*iWidth, + 1, 1, inverse); + } +} + +} |