diff options
author | Willem Jan Palenstijn <WillemJan.Palenstijn@uantwerpen.be> | 2013-07-01 22:34:11 +0000 |
---|---|---|
committer | wpalenst <WillemJan.Palenstijn@uantwerpen.be> | 2013-07-01 22:34:11 +0000 |
commit | b2fc6c70434674d74551c3a6c01ffb3233499312 (patch) | |
tree | b17f080ebc504ab85ebb7c3d89f917fd87ce9e00 /cuda/3d/cone_fp.cu | |
download | astra-b2fc6c70434674d74551c3a6c01ffb3233499312.tar.gz astra-b2fc6c70434674d74551c3a6c01ffb3233499312.tar.bz2 astra-b2fc6c70434674d74551c3a6c01ffb3233499312.tar.xz astra-b2fc6c70434674d74551c3a6c01ffb3233499312.zip |
Update version to 1.3
Diffstat (limited to 'cuda/3d/cone_fp.cu')
-rw-r--r-- | cuda/3d/cone_fp.cu | 513 |
1 files changed, 513 insertions, 0 deletions
diff --git a/cuda/3d/cone_fp.cu b/cuda/3d/cone_fp.cu new file mode 100644 index 0000000..40dca4f --- /dev/null +++ b/cuda/3d/cone_fp.cu @@ -0,0 +1,513 @@ +/* +----------------------------------------------------------------------- +Copyright 2012 iMinds-Vision Lab, University of Antwerp + +Contact: astra@ua.ac.be +Website: http://astra.ua.ac.be + + +This file is part of the +All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). + +The ASTRA Toolbox is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version. + +The ASTRA Toolbox is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. + +----------------------------------------------------------------------- +$Id$ +*/ + +#include <cstdio> +#include <cassert> +#include <iostream> +#include <list> + +#include <cuda.h> +#include "util3d.h" + +#ifdef STANDALONE +#include "testutil.h" +#endif + +#include "dims3d.h" + +typedef texture<float, 3, cudaReadModeElementType> texture3D; + +static texture3D gT_coneVolumeTexture; + +namespace astraCUDA3d { + +static const unsigned int g_anglesPerBlock = 4; + +// thickness of the slices we're splitting the volume up into +static const unsigned int g_blockSlices = 64; +static const unsigned int g_detBlockU = 32; +static const unsigned int g_detBlockV = 32; + +static const unsigned g_MaxAngles = 1024; +__constant__ float gC_SrcX[g_MaxAngles]; +__constant__ float gC_SrcY[g_MaxAngles]; +__constant__ float gC_SrcZ[g_MaxAngles]; +__constant__ float gC_DetSX[g_MaxAngles]; +__constant__ float gC_DetSY[g_MaxAngles]; +__constant__ float gC_DetSZ[g_MaxAngles]; +__constant__ float gC_DetUX[g_MaxAngles]; +__constant__ float gC_DetUY[g_MaxAngles]; +__constant__ float gC_DetUZ[g_MaxAngles]; +__constant__ float gC_DetVX[g_MaxAngles]; +__constant__ float gC_DetVY[g_MaxAngles]; +__constant__ float gC_DetVZ[g_MaxAngles]; + + +bool bindVolumeDataTexture(const cudaArray* array) +{ + cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>(); + + gT_coneVolumeTexture.addressMode[0] = cudaAddressModeClamp; + gT_coneVolumeTexture.addressMode[1] = cudaAddressModeClamp; + gT_coneVolumeTexture.addressMode[2] = cudaAddressModeClamp; + gT_coneVolumeTexture.filterMode = cudaFilterModeLinear; + gT_coneVolumeTexture.normalized = false; + + cudaBindTextureToArray(gT_coneVolumeTexture, array, channelDesc); + + // TODO: error value? + + return true; +} + + // threadIdx: x = ??? detector (u?) + // y = relative angle + + // blockIdx: x = ??? detector (u+v?) + // y = angle block + + +#define CONE_FP_BODY(c0,c1,c2) \ + int angle = startAngle + blockIdx.y * g_anglesPerBlock + threadIdx.y; \ + if (angle >= endAngle) \ + return; \ + \ + const float fSrcX = gC_SrcX[angle]; \ + const float fSrcY = gC_SrcY[angle]; \ + const float fSrcZ = gC_SrcZ[angle]; \ + const float fDetUX = gC_DetUX[angle]; \ + const float fDetUY = gC_DetUY[angle]; \ + const float fDetUZ = gC_DetUZ[angle]; \ + const float fDetVX = gC_DetVX[angle]; \ + const float fDetVY = gC_DetVY[angle]; \ + const float fDetVZ = gC_DetVZ[angle]; \ + const float fDetSX = gC_DetSX[angle] + 0.5f * fDetUX + 0.5f * fDetVX; \ + const float fDetSY = gC_DetSY[angle] + 0.5f * fDetUY + 0.5f * fDetVY; \ + const float fDetSZ = gC_DetSZ[angle] + 0.5f * fDetUZ + 0.5f * fDetVZ; \ + \ + const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x; \ + const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV; \ + int endDetectorV = startDetectorV + g_detBlockV; \ + if (endDetectorV > dims.iProjV) \ + endDetectorV = dims.iProjV; \ + \ + int endSlice = startSlice + g_blockSlices; \ + if (endSlice > dims.iVol##c0) \ + endSlice = dims.iVol##c0; \ + \ + for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV) \ + { \ + /* Trace ray from Src to (detectorU,detectorV) from */ \ + /* X = startSlice to X = endSlice */ \ + \ + const float fDetX = fDetSX + detectorU*fDetUX + detectorV*fDetVX; \ + const float fDetY = fDetSY + detectorU*fDetUY + detectorV*fDetVY; \ + const float fDetZ = fDetSZ + detectorU*fDetUZ + detectorV*fDetVZ; \ + \ + /* (x) ( 1) ( 0) */ \ + /* ray: (y) = (ay) * x + (by) */ \ + /* (z) (az) (bz) */ \ + \ + const float a##c1 = (fSrc##c1 - fDet##c1) / (fSrc##c0 - fDet##c0); \ + const float a##c2 = (fSrc##c2 - fDet##c2) / (fSrc##c0 - fDet##c0); \ + const float b##c1 = fSrc##c1 - a##c1 * fSrc##c0; \ + const float b##c2 = fSrc##c2 - a##c2 * fSrc##c0; \ + \ + const float fDistCorr = sqrt(a##c1*a##c1+a##c2*a##c2+1.0f) * fOutputScale; \ + \ + float fVal = 0.0f; \ + \ + float f##c0 = startSlice + 1.5f; \ + float f##c1 = a##c1 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c1 + 0.5f*dims.iVol##c1 - 0.5f + 1.5f; \ + float f##c2 = a##c2 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c2 + 0.5f*dims.iVol##c2 - 0.5f + 1.5f; \ + \ + for (int s = startSlice; s < endSlice; ++s) \ + { \ + fVal += tex3D(gT_coneVolumeTexture, fX, fY, fZ); \ + f##c0 += 1.0f; \ + f##c1 += a##c1; \ + f##c2 += a##c2; \ + } \ + \ + fVal *= fDistCorr; \ + \ + D_projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] += fVal; \ + } + +#define CONE_FP_SS_BODY(c0,c1,c2) \ + int angle = startAngle + blockIdx.y * g_anglesPerBlock + threadIdx.y; \ + if (angle >= endAngle) \ + return; \ + \ + const float fSrcX = gC_SrcX[angle]; \ + const float fSrcY = gC_SrcY[angle]; \ + const float fSrcZ = gC_SrcZ[angle]; \ + const float fDetUX = gC_DetUX[angle]; \ + const float fDetUY = gC_DetUY[angle]; \ + const float fDetUZ = gC_DetUZ[angle]; \ + const float fDetVX = gC_DetVX[angle]; \ + const float fDetVY = gC_DetVY[angle]; \ + const float fDetVZ = gC_DetVZ[angle]; \ + const float fDetSX = gC_DetSX[angle] + 0.5f * fDetUX + 0.5f * fDetVX; \ + const float fDetSY = gC_DetSY[angle] + 0.5f * fDetUY + 0.5f * fDetVY; \ + const float fDetSZ = gC_DetSZ[angle] + 0.5f * fDetUZ + 0.5f * fDetVZ; \ + \ + const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x; \ + const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV; \ + int endDetectorV = startDetectorV + g_detBlockV; \ + if (endDetectorV > dims.iProjV) \ + endDetectorV = dims.iProjV; \ + \ + int endSlice = startSlice + g_blockSlices; \ + if (endSlice > dims.iVolX) \ + endSlice = dims.iVolX; \ + \ + const float fSubStep = 1.0f/dims.iRaysPerDetDim; \ + \ + for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV) \ + { \ + /* Trace ray from Src to (detectorU,detectorV) from */ \ + /* X = startSlice to X = endSlice */ \ + \ + float fV = 0.0f; \ + \ + float fdU = detectorU - 0.5f + 0.5f*fSubStep; \ + for (int iSubU = 0; iSubU < dims.iRaysPerDetDim; ++iSubU, fdU+=fSubStep) { \ + float fdV = detectorV - 0.5f + 0.5f*fSubStep; \ + for (int iSubV = 0; iSubV < dims.iRaysPerDetDim; ++iSubV, fdV+=fSubStep) { \ + \ + const float fDetX = fDetSX + fdU*fDetUX + fdV*fDetVX; \ + const float fDetY = fDetSY + fdU*fDetUY + fdV*fDetVY; \ + const float fDetZ = fDetSZ + fdU*fDetUZ + fdV*fDetVZ; \ + \ + /* (x) ( 1) ( 0) */ \ + /* ray: (y) = (ay) * x + (by) */ \ + /* (z) (az) (bz) */ \ + \ + const float a##c1 = (fSrc##c1 - fDet##c1) / (fSrc##c0 - fDet##c0); \ + const float a##c2 = (fSrc##c2 - fDet##c2) / (fSrc##c0 - fDet##c0); \ + const float b##c1 = fSrc##c1 - a##c1 * fSrc##c0; \ + const float b##c2 = fSrc##c2 - a##c2 * fSrc##c0; \ + \ + const float fDistCorr = sqrt(a##c1*a##c1+a##c2*a##c2+1.0f) * fOutputScale; \ + \ + float fVal = 0.0f; \ + \ + float f##c0 = startSlice + 1.5f; \ + float f##c1 = a##c1 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c1 + 0.5f*dims.iVol##c1 - 0.5f + 1.5f; \ + float f##c2 = a##c2 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c2 + 0.5f*dims.iVol##c2 - 0.5f + 1.5f; \ + \ + for (int s = startSlice; s < endSlice; ++s) \ + { \ + fVal += tex3D(gT_coneVolumeTexture, fX, fY, fZ); \ + f##c0 += 1.0f; \ + f##c1 += a##c1; \ + f##c2 += a##c2; \ + } \ + \ + fVal *= fDistCorr; \ + fV += fVal; \ + \ + } \ + } \ + \ + D_projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] += fV / (dims.iRaysPerDetDim * dims.iRaysPerDetDim);\ + } + + + + + +__global__ void FP_dirX(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale) +{ +CONE_FP_BODY(X,Y,Z) +} + +__global__ void FP_dirY(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale) +{ +CONE_FP_BODY(Y,X,Z) +} + +__global__ void FP_dirZ(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale) +{ +CONE_FP_BODY(Z,X,Y) +} + + +__global__ void FP_SS_dirX(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale) +{ +CONE_FP_SS_BODY(X,Y,Z) +} + +__global__ void FP_SS_dirY(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale) +{ +CONE_FP_SS_BODY(Y,X,Z) +} + +__global__ void FP_SS_dirZ(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale) +{ +CONE_FP_SS_BODY(Z,X,Y) +} + + + +bool ConeFP_Array(cudaArray *D_volArray, + cudaPitchedPtr D_projData, + const SDimensions3D& dims, const SConeProjection* angles, + float fOutputScale) +{ + bindVolumeDataTexture(D_volArray); + + // transfer angles to constant memory + float* tmp = new float[dims.iProjAngles]; + +#define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0) + + TRANSFER_TO_CONSTANT(SrcX); + TRANSFER_TO_CONSTANT(SrcY); + TRANSFER_TO_CONSTANT(SrcZ); + TRANSFER_TO_CONSTANT(DetSX); + TRANSFER_TO_CONSTANT(DetSY); + TRANSFER_TO_CONSTANT(DetSZ); + TRANSFER_TO_CONSTANT(DetUX); + TRANSFER_TO_CONSTANT(DetUY); + TRANSFER_TO_CONSTANT(DetUZ); + TRANSFER_TO_CONSTANT(DetVX); + TRANSFER_TO_CONSTANT(DetVY); + TRANSFER_TO_CONSTANT(DetVZ); + +#undef TRANSFER_TO_CONSTANT + + delete[] tmp; + + std::list<cudaStream_t> streams; + dim3 dimBlock(g_detBlockU, g_anglesPerBlock); // region size, angles + + // Run over all angles, grouping them into groups of the same + // orientation (roughly horizontal vs. roughly vertical). + // Start a stream of grids for each such group. + + unsigned int blockStart = 0; + unsigned int blockEnd = 0; + int blockDirection = 0; + + // timeval t; + // tic(t); + + for (unsigned int a = 0; a <= dims.iProjAngles; ++a) { + int dir; + if (a != dims.iProjAngles) { + float dX = fabsf(angles[a].fSrcX - (angles[a].fDetSX + dims.iProjU*angles[a].fDetUX*0.5f + dims.iProjV*angles[a].fDetVX*0.5f)); + float dY = fabsf(angles[a].fSrcY - (angles[a].fDetSY + dims.iProjU*angles[a].fDetUY*0.5f + dims.iProjV*angles[a].fDetVY*0.5f)); + float dZ = fabsf(angles[a].fSrcZ - (angles[a].fDetSZ + dims.iProjU*angles[a].fDetUZ*0.5f + dims.iProjV*angles[a].fDetVZ*0.5f)); + + if (dX >= dY && dX >= dZ) + dir = 0; + else if (dY >= dX && dY >= dZ) + dir = 1; + else + dir = 2; + } + + if (a == dims.iProjAngles || dir != blockDirection) { + // block done + + blockEnd = a; + if (blockStart != blockEnd) { + + dim3 dimGrid( + ((dims.iProjU+g_detBlockU-1)/g_detBlockU)*((dims.iProjV+g_detBlockV-1)/g_detBlockV), +(blockEnd-blockStart+g_anglesPerBlock-1)/g_anglesPerBlock); + // TODO: check if we can't immediately + // destroy the stream after use + cudaStream_t stream; + cudaStreamCreate(&stream); + streams.push_back(stream); + + // printf("angle block: %d to %d, %d (%dx%d, %dx%d)\n", blockStart, blockEnd, blockDirection, dimGrid.x, dimGrid.y, dimBlock.x, dimBlock.y); + + if (blockDirection == 0) { + for (unsigned int i = 0; i < dims.iVolX; i += g_blockSlices) + if (dims.iRaysPerDetDim == 1) + FP_dirX<<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale); + else + FP_SS_dirX<<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale); + } else if (blockDirection == 1) { + for (unsigned int i = 0; i < dims.iVolY; i += g_blockSlices) + if (dims.iRaysPerDetDim == 1) + FP_dirY<<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale); + else + FP_SS_dirY<<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale); + } else if (blockDirection == 2) { + for (unsigned int i = 0; i < dims.iVolZ; i += g_blockSlices) + if (dims.iRaysPerDetDim == 1) + FP_dirZ<<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale); + else + FP_SS_dirZ<<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale); + } + + } + + blockDirection = dir; + blockStart = a; + } + } + + for (std::list<cudaStream_t>::iterator iter = streams.begin(); iter != streams.end(); ++iter) + cudaStreamDestroy(*iter); + + streams.clear(); + + cudaTextForceKernelsCompletion(); + + // printf("%f\n", toc(t)); + + return true; +} + +bool ConeFP(cudaPitchedPtr D_volumeData, + cudaPitchedPtr D_projData, + const SDimensions3D& dims, const SConeProjection* angles, + float fOutputScale) +{ + // transfer volume to array + + cudaArray* cuArray = allocateVolumeArray(dims); + transferVolumeToArray(D_volumeData, cuArray, dims); + + bool ret = ConeFP_Array(cuArray, D_projData, dims, angles, fOutputScale); + + cudaFreeArray(cuArray); + + return ret; +} + + +} + +#ifdef STANDALONE +int main() +{ + SDimensions3D dims; + dims.iVolX = 256; + dims.iVolY = 256; + dims.iVolZ = 256; + dims.iProjAngles = 32; + dims.iProjU = 512; + dims.iProjV = 512; + dims.iRaysPerDet = 1; + + cudaExtent extentV; + extentV.width = dims.iVolX*sizeof(float); + extentV.height = dims.iVolY; + extentV.depth = dims.iVolZ; + + cudaPitchedPtr volData; // pitch, ptr, xsize, ysize + + cudaMalloc3D(&volData, extentV); + + cudaExtent extentP; + extentP.width = dims.iProjU*sizeof(float); + extentP.height = dims.iProjV; + extentP.depth = dims.iProjAngles; + + cudaPitchedPtr projData; // pitch, ptr, xsize, ysize + + cudaMalloc3D(&projData, extentP); + cudaMemset3D(projData, 0, extentP); + + float* slice = new float[256*256]; + cudaPitchedPtr ptr; + ptr.ptr = slice; + ptr.pitch = 256*sizeof(float); + ptr.xsize = 256*sizeof(float); + ptr.ysize = 256; + + for (unsigned int i = 0; i < 256*256; ++i) + slice[i] = 1.0f; + for (unsigned int i = 0; i < 256; ++i) { + cudaExtent extentS; + extentS.width = dims.iVolX*sizeof(float); + extentS.height = dims.iVolY; + extentS.depth = 1; + cudaPos sp = { 0, 0, 0 }; + cudaPos dp = { 0, 0, i }; + cudaMemcpy3DParms p; + p.srcArray = 0; + p.srcPos = sp; + p.srcPtr = ptr; + p.dstArray = 0; + p.dstPos = dp; + p.dstPtr = volData; + p.extent = extentS; + p.kind = cudaMemcpyHostToDevice; + cudaError err = cudaMemcpy3D(&p); + assert(!err); + } + + + SConeProjection angle[32]; + angle[0].fSrcX = -1536; + angle[0].fSrcY = 0; + angle[0].fSrcZ = 200; + + angle[0].fDetSX = 512; + angle[0].fDetSY = -256; + angle[0].fDetSZ = -256; + + angle[0].fDetUX = 0; + angle[0].fDetUY = 1; + angle[0].fDetUZ = 0; + + angle[0].fDetVX = 0; + angle[0].fDetVY = 0; + angle[0].fDetVZ = 1; + +#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0) + for (int i = 1; i < 32; ++i) { + angle[i] = angle[0]; + ROTATE0(Src, i, i*1*M_PI/180); + ROTATE0(DetS, i, i*1*M_PI/180); + ROTATE0(DetU, i, i*1*M_PI/180); + ROTATE0(DetV, i, i*1*M_PI/180); + } +#undef ROTATE0 + + astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f); + + float* buf = new float[512*512]; + + cudaMemcpy(buf, ((float*)projData.ptr)+512*512*8, 512*512*sizeof(float), cudaMemcpyDeviceToHost); + + printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize); + + saveImage("proj.png", 512, 512, buf); + + +} +#endif |