From 697c0bdd118ba844d65d6fb87ca82363efb94cfc Mon Sep 17 00:00:00 2001 From: Jakob Jorgensen Date: Thu, 12 Apr 2018 15:22:34 +0100 Subject: simple_demo tidied, TV not working --- Wrappers/Python/wip/simple_demo_astra.py | 211 ++++++++++++++++++------------- 1 file changed, 120 insertions(+), 91 deletions(-) (limited to 'Wrappers') diff --git a/Wrappers/Python/wip/simple_demo_astra.py b/Wrappers/Python/wip/simple_demo_astra.py index e9586b0..369bc99 100755 --- a/Wrappers/Python/wip/simple_demo_astra.py +++ b/Wrappers/Python/wip/simple_demo_astra.py @@ -1,189 +1,218 @@ -#import sys -#sys.path.append("..") +# This demo illustrates how ASTRA 2D projectors can be used with +# the modular optimisation framework. The demo sets up a 2D test case and +# demonstrates reconstruction using CGLS, as well as FISTA for least squares +# and 1-norm regularisation and FBPD for 1-norm and TV regularisation. + +# First make all imports from ccpi.framework import ImageData , ImageGeometry, AcquisitionGeometry from ccpi.optimisation.algs import FISTA, FBPD, CGLS -from ccpi.optimisation.funcs import Norm2sq, Norm1 , TV2D +from ccpi.optimisation.funcs import Norm2sq, Norm1, TV2D from ccpi.astra.astra_ops import AstraProjectorSimple - import numpy as np import matplotlib.pyplot as plt -test_case = 1 # 1=parallel2D, 2=cone2D +# Choose either a parallel-beam (1=parallel2D) or fan-beam (2=cone2D) test case +test_case = 1 -# Set up phantom +# Set up phantom size NxN by creating ImageGeometry, initialising the +# ImageData object with this geometry and empty array and finally put some +# data into its array, and display as image. N = 128 - - -vg = ImageGeometry(voxel_num_x=N,voxel_num_y=N) -Phantom = ImageData(geometry=vg) +ig = ImageGeometry(voxel_num_x=N,voxel_num_y=N) +Phantom = ImageData(geometry=ig) x = Phantom.as_array() x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 plt.imshow(x) +plt.title('Phantom image') plt.show() -# Set up measurement geometry -angles_num = 20; # angles number +# Set up AcquisitionGeometry object to hold the parameters of the measurement +# setup geometry: # Number of angles, the actual angles from 0 to +# pi for parallel beam and 0 to 2pi for fanbeam, set the width of a detector +# pixel relative to an object pixel, the number of detector pixels, and the +# source-origin and origin-detector distance (here the origin-detector distance +# set to 0 to simulate a "virtual detector" with same detector pixel size as +# object pixel size). +angles_num = 20 +det_w = 1.0 +det_num = N +SourceOrig = 200 +OrigDetec = 0 if test_case==1: angles = np.linspace(0,np.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('parallel', + '2D', + angles, + det_num,det_w) elif test_case==2: angles = np.linspace(0,2*np.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('cone', + '2D', + angles, + det_num, + det_w, + dist_source_center=SourceOrig, + dist_center_detector=OrigDetec) else: NotImplemented -det_w = 1.0 -det_num = N -SourceOrig = 200 -OrigDetec = 0 +# Set up Operator object combining the ImageGeometry and AcquisitionGeometry +# wrapping calls to ASTRA as well as specifying whether to use CPU or GPU. +Aop = AstraProjectorSimple(ig, ag, 'gpu') -# Parallelbeam geometry test -if test_case==1: - pg = AcquisitionGeometry('parallel', - '2D', - angles, - det_num,det_w) -elif test_case==2: - pg = AcquisitionGeometry('cone', - '2D', - angles, - det_num, - det_w, - dist_source_center=SourceOrig, - dist_center_detector=OrigDetec) - -# ASTRA operator using volume and sinogram geometries -Aop = AstraProjectorSimple(vg, pg, 'cpu') - -# Unused old astra projector without geometry -# Aop_old = AstraProjector(det_w, det_num, SourceOrig, -# OrigDetec, angles, -# N,'fanbeam','gpu') - -# Try forward and backprojection +# Forward and backprojection are available as methods direct and adjoint. Here +# generate test data b and do simple backprojection to obtain z. b = Aop.direct(Phantom) -out2 = Aop.adjoint(b) +z = Aop.adjoint(b) plt.imshow(b.array) +plt.title('Simulated data') plt.show() -plt.imshow(out2.array) +plt.imshow(z.array) +plt.title('Backprojected data') plt.show() -# Create least squares object instance with projector and data. -f = Norm2sq(Aop,b,c=0.5) +# Using the test data b, different reconstruction methods can now be set up as +# demonstrated in the rest of this file. In general all methods need an initial +# guess and some algorithm options to be set: +x_init = ImageData(np.zeros(x.shape),geometry=ig) +opt = {'tol': 1e-4, 'iter': 1000} + +# First a CGLS reconstruction can be done: +x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, b, opt) + +plt.imshow(x_CGLS.array) +plt.title('CGLS') +plt.show() + +plt.semilogy(criter_CGLS) +plt.title('CGLS criterion') +plt.show() -# Initial guess -x_init = ImageData(np.zeros(x.shape),geometry=vg) +# CGLS solves the simple least-squares problem. The same problem can be solved +# by FISTA by setting up explicitly a least squares function object and using +# no regularisation: + +# Create least squares object instance with projector, test data and a constant +# coefficient of 0.5: +f = Norm2sq(Aop,b,c=0.5) # Run FISTA for least squares without regularization -x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None) +x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None,opt) plt.imshow(x_fista0.array) -plt.title('FISTA0') +plt.title('FISTA Least squares') +plt.show() + +plt.semilogy(criter0) +plt.title('FISTA Least squares criterion') plt.show() -# Now least squares plus 1-norm regularization +# FISTA can also solve regularised forms by specifying a second function object +# such as 1-norm regularisation with choice of regularisation parameter lam: + +# Create 1-norm function object lam = 0.1 g0 = Norm1(lam) # Run FISTA for least squares plus 1-norm function. -x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0) +x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0, opt) plt.imshow(x_fista1.array) -plt.title('FISTA1') +plt.title('FISTA Least squares plus 1-norm regularisation') plt.show() plt.semilogy(criter1) +plt.title('FISTA Least squares plus 1-norm regularisation criterion') plt.show() -# Run FBPD=Forward Backward Primal Dual method on least squares plus 1-norm -opt = {'tol': 1e-4, 'iter': 100} -x_fbpd1, it_fbpd1, timing_fbpd1, criter_fbpd1 = FBPD(x_init,None,f,g0,opt=opt) +# The least squares plus 1-norm regularisation problem can also be solved by +# other algorithms such as the Forward Backward Primal Dual algorithm. This +# algorithm minimises the sum of three functions and the least squares and +# 1-norm functions should be given as the second and third function inputs. +# In this test case, this algorithm requires more iterations to converge, so +# new options are specified. +opt_FBPD = {'tol': 1e-4, 'iter': 7000} +x_fbpd1, it_fbpd1, timing_fbpd1, criter_fbpd1 = FBPD(x_init,None,f,g0,opt_FBPD) plt.imshow(x_fbpd1.array) -plt.title('FBPD1') +plt.title('FBPD for least squares plus 1-norm regularisation') plt.show() plt.semilogy(criter_fbpd1) +plt.title('FBPD for least squares plus 1-norm regularisation criterion') plt.show() -# Now FBPD for least squares plus TV +# The FBPD algorithm can also be used conveniently for TV regularisation: + +# Specify TV function object #lamtv = 1 #gtv = TV2D(lamtv) - -#x_fbpdtv, it_fbpdtv, timing_fbpdtv, criter_fbpdtv = FBPD(x_init,None,f,gtv,opt=opt) - +# +#x_fbpdtv,it_fbpdtv,timing_fbpdtv,criter_fbpdtv=FBPD(x_init,None,f,gtv,opt_FBPD) +# #plt.imshow(x_fbpdtv.array) #plt.show() - +# #plt.semilogy(criter_fbpdtv) #plt.show() -# Run CGLS, which should agree with the FISTA0 -x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, b, opt ) - -plt.imshow(x_CGLS.array) -plt.title('CGLS') -#plt.title('CGLS recon, compare FISTA0') -plt.show() - -plt.semilogy(criter_CGLS) -plt.title('CGLS criterion') -plt.show() - - -#%% - +# Compare all reconstruction and criteria clims = (0,1) cols = 3 rows = 2 current = 1 + fig = plt.figure() -# projections row a=fig.add_subplot(rows,cols,current) a.set_title('phantom {0}'.format(np.shape(Phantom.as_array()))) - imgplot = plt.imshow(Phantom.as_array(),vmin=clims[0],vmax=clims[1]) +plt.axis('off') current = current + 1 a=fig.add_subplot(rows,cols,current) -a.set_title('FISTA0') -imgplot = plt.imshow(x_fista0.as_array(),vmin=clims[0],vmax=clims[1]) +a.set_title('CGLS') +imgplot = plt.imshow(x_CGLS.as_array(),vmin=clims[0],vmax=clims[1]) +plt.axis('off') current = current + 1 a=fig.add_subplot(rows,cols,current) -a.set_title('FISTA1') -imgplot = plt.imshow(x_fista1.as_array(),vmin=clims[0],vmax=clims[1]) +a.set_title('FISTA LS') +imgplot = plt.imshow(x_fista0.as_array(),vmin=clims[0],vmax=clims[1]) +plt.axis('off') current = current + 1 a=fig.add_subplot(rows,cols,current) -a.set_title('FBPD1') -imgplot = plt.imshow(x_fbpd1.as_array(),vmin=clims[0],vmax=clims[1]) +a.set_title('FISTA LS+1') +imgplot = plt.imshow(x_fista1.as_array(),vmin=clims[0],vmax=clims[1]) +plt.axis('off') current = current + 1 a=fig.add_subplot(rows,cols,current) -a.set_title('CGLS') -imgplot = plt.imshow(x_CGLS.as_array(),vmin=clims[0],vmax=clims[1]) +a.set_title('FBPD LS+1') +imgplot = plt.imshow(x_fbpd1.as_array(),vmin=clims[0],vmax=clims[1]) +plt.axis('off') #current = current + 1 #a=fig.add_subplot(rows,cols,current) #a.set_title('FBPD TV') #imgplot = plt.imshow(x_fbpdtv.as_array(),vmin=clims[0],vmax=clims[1]) +#plt.axis('off') fig = plt.figure() -# projections row b=fig.add_subplot(1,1,1) b.set_title('criteria') -imgplot = plt.loglog(criter0 , label='FISTA0') -imgplot = plt.loglog(criter1 , label='FISTA1') -imgplot = plt.loglog(criter_fbpd1, label='FBPD1') imgplot = plt.loglog(criter_CGLS, label='CGLS') +imgplot = plt.loglog(criter0 , label='FISTA LS') +imgplot = plt.loglog(criter1 , label='FISTA LS+1') +imgplot = plt.loglog(criter_fbpd1, label='FBPD LS+1') #imgplot = plt.loglog(criter_fbpdtv, label='FBPD TV') -b.legend(loc='right') +b.legend(loc='lower left') plt.show() -#%% \ No newline at end of file -- cgit v1.2.3