diff options
author | Jakob Jorgensen <jakob.jorgensen@manchester.ac.uk> | 2018-04-12 16:25:08 +0100 |
---|---|---|
committer | Jakob Jorgensen <jakob.jorgensen@manchester.ac.uk> | 2018-04-12 16:25:08 +0100 |
commit | ada06499b6c2d4932f7f26a2f17d346d8135fb7b (patch) | |
tree | ab85bd2d103aa899350e722fd60f2fe34391a643 /Wrappers | |
parent | 1ee5e4ca7d69fadbdf209e847cf6bf30a20fc734 (diff) | |
download | astra-wrapper-ada06499b6c2d4932f7f26a2f17d346d8135fb7b.tar.gz astra-wrapper-ada06499b6c2d4932f7f26a2f17d346d8135fb7b.tar.bz2 astra-wrapper-ada06499b6c2d4932f7f26a2f17d346d8135fb7b.tar.xz astra-wrapper-ada06499b6c2d4932f7f26a2f17d346d8135fb7b.zip |
mc demo tidied up
Diffstat (limited to 'Wrappers')
-rwxr-xr-x | Wrappers/Python/wip/simple_mc_demo.py | 128 |
1 files changed, 61 insertions, 67 deletions
diff --git a/Wrappers/Python/wip/simple_mc_demo.py b/Wrappers/Python/wip/simple_mc_demo.py index f77a678..eb69c88 100755 --- a/Wrappers/Python/wip/simple_mc_demo.py +++ b/Wrappers/Python/wip/simple_mc_demo.py @@ -1,23 +1,27 @@ -#import sys -#sys.path.append("..") +# This demo demonstrates a simple multichannel reconstruction case. A +# synthetic 3-channel phantom image is set up, data is simulated and the FISTA +# algorithm is used to compute least squares and least squares with 1-norm +# regularisation reconstructions. + +# Do all imports from ccpi.framework import ImageData, AcquisitionData, ImageGeometry, AcquisitionGeometry -from ccpi.reconstruction.algs import FISTA -from ccpi.reconstruction.funcs import Norm2sq, Norm1 +from ccpi.optimisation.algs import FISTA +from ccpi.optimisation.funcs import Norm2sq, Norm1 from ccpi.astra.astra_ops import AstraProjectorMC - import numpy import matplotlib.pyplot as plt -test_case = 1 # 1=parallel2D, 2=cone2D +# Choose either a parallel-beam (1=parallel2D) or fan-beam (2=cone2D) test case +test_case = 1 -# Set up phantom +# Set up phantom NxN pixels and 3 channels. Set up the ImageGeometry and fill +# some test data in each of the channels. Display each channel as image. N = 128 -M = 100 numchannels = 3 -vg = ImageGeometry(voxel_num_x=N,voxel_num_y=N,channels=numchannels) -Phantom = ImageData(geometry=vg) +ig = ImageGeometry(voxel_num_x=N,voxel_num_y=N,channels=numchannels) +Phantom = ImageData(geometry=ig) x = Phantom.as_array() x[0 , round(N/4):round(3*N/4) , round(N/4):round(3*N/4) ] = 1.0 @@ -29,65 +33,52 @@ x[1 , round(N/8):round(7*N/8) , round(3*N/8):round(5*N/8)] = 1.2 x[2 , round(N/4):round(3*N/4) , round(N/4):round(3*N/4) ] = 1.5 x[2 , round(N/8):round(7*N/8) , round(3*N/8):round(5*N/8)] = 2.2 -#x = numpy.zeros((N,N,1,numchannels)) - -#x[round(N/4):round(3*N/4),round(N/4):round(3*N/4),:,0] = 1.0 -#x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8),:,0] = 2.0 - -#x[round(N/4):round(3*N/4),round(N/4):round(3*N/4),:,1] = 0.7 -#x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8),:,1] = 1.2 - -#x[round(N/4):round(3*N/4),round(N/4):round(3*N/4),:,2] = 1.5 -#x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8),:,2] = 2.2 - f, axarr = plt.subplots(1,numchannels) for k in numpy.arange(3): axarr[k].imshow(x[k],vmin=0,vmax=2.5) plt.show() -#vg = ImageGeometry(N,N,None, 1,1,None,channels=numchannels) - - -#Phantom = ImageData(x,geometry=vg) - -# Set up measurement geometry -angles_num = 20; # angles number - -if test_case==1: - angles = numpy.linspace(0,numpy.pi,angles_num,endpoint=False) -elif test_case==2: - angles = numpy.linspace(0,2*numpy.pi,angles_num,endpoint=False) -else: - NotImplemented - +# Set up AcquisitionGeometry object to hold the parameters of the measurement +# setup geometry: # Number of angles, the actual angles from 0 to +# pi for parallel beam and 0 to 2pi for fanbeam, set the width of a detector +# pixel relative to an object pixel, the number of detector pixels, and the +# source-origin and origin-detector distance (here the origin-detector distance +# set to 0 to simulate a "virtual detector" with same detector pixel size as +# object pixel size). +angles_num = 20 det_w = 1.0 det_num = N SourceOrig = 200 OrigDetec = 0 -# Parallelbeam geometry test if test_case==1: - pg = AcquisitionGeometry('parallel', - '2D', - angles, - det_num, - det_w, - channels=numchannels) + angles = numpy.linspace(0,numpy.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('parallel', + '2D', + angles, + det_num, + det_w, + channels=numchannels) elif test_case==2: - pg = AcquisitionGeometry('cone', - '2D', - angles, - det_num, - det_w, - dist_source_center=SourceOrig, - dist_center_detector=OrigDetec, - channels=numchannels) - -# ASTRA operator using volume and sinogram geometries -Aop = AstraProjectorMC(vg, pg, 'cpu') + angles = numpy.linspace(0,2*numpy.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('cone', + '2D', + angles, + det_num, + det_w, + dist_source_center=SourceOrig, + dist_center_detector=OrigDetec, + channels=numchannels) +else: + NotImplemented +# Set up Operator object combining the ImageGeometry and AcquisitionGeometry +# wrapping calls to ASTRA as well as specifying whether to use CPU or GPU. +Aop = AstraProjectorMC(ig, ag, 'gpu') -# Try forward and backprojection +# Forward and backprojection are available as methods direct and adjoint. Here +# generate test data b and do simple backprojection to obtain z. Applies +# channel by channel b = Aop.direct(Phantom) fb, axarrb = plt.subplots(1,numchannels) @@ -95,26 +86,27 @@ for k in numpy.arange(3): axarrb[k].imshow(b.as_array()[k],vmin=0,vmax=250) plt.show() -out2 = Aop.adjoint(b) +z = Aop.adjoint(b) fo, axarro = plt.subplots(1,numchannels) for k in range(3): - axarro[k].imshow(out2.as_array()[k],vmin=0,vmax=3500) + axarro[k].imshow(z.as_array()[k],vmin=0,vmax=3500) plt.show() -# Create least squares object instance with projector and data. -f = Norm2sq(Aop,b,c=0.5) - -# Initial guess -x_init = ImageData(numpy.zeros(x.shape),geometry=vg) - -# FISTA options +# Using the test data b, different reconstruction methods can now be set up as +# demonstrated in the rest of this file. In general all methods need an initial +# guess and some algorithm options to be set: +x_init = ImageData(np.zeros(x.shape),geometry=ig) opt = {'tol': 1e-4, 'iter': 200} +# Create least squares object instance with projector, test data and a constant +# coefficient of 0.5. Note it is least squares over all channels: +f = Norm2sq(Aop,b,c=0.5) + # Run FISTA for least squares without regularization x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None, opt) - +# Display reconstruction and criteration ff0, axarrf0 = plt.subplots(1,numchannels) for k in numpy.arange(3): axarrf0[k].imshow(x_fista0.as_array()[k],vmin=0,vmax=2.5) @@ -124,14 +116,16 @@ plt.semilogy(criter0) plt.title('Criterion vs iterations, least squares') plt.show() -# Now least squares plus 1-norm regularization +# FISTA can also solve regularised forms by specifying a second function object +# such as 1-norm regularisation with choice of regularisation parameter lam. +# Again the regulariser is over all channels: lam = 0.1 g0 = Norm1(lam) - # Run FISTA for least squares plus 1-norm function. x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0, opt) +# Display reconstruction and criteration ff1, axarrf1 = plt.subplots(1,numchannels) for k in numpy.arange(3): axarrf1[k].imshow(x_fista1.as_array()[k],vmin=0,vmax=2.5) |