diff options
author | jakobsj <jakobsj@users.noreply.github.com> | 2018-04-20 09:12:11 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-04-20 09:12:11 +0100 |
commit | bfae83abc0e92b0c2415ed8fe20b8cc1138a1122 (patch) | |
tree | b9496bf7c3c803652e3d9e560991d8b670188847 /Wrappers/Python | |
parent | 510cb3e98b30184beab96f908c6105df1e348030 (diff) | |
parent | 679268b9582e6de7d780e2b3b482b84905bb7657 (diff) | |
download | astra-wrapper-bfae83abc0e92b0c2415ed8fe20b8cc1138a1122.tar.gz astra-wrapper-bfae83abc0e92b0c2415ed8fe20b8cc1138a1122.tar.bz2 astra-wrapper-bfae83abc0e92b0c2415ed8fe20b8cc1138a1122.tar.xz astra-wrapper-bfae83abc0e92b0c2415ed8fe20b8cc1138a1122.zip |
Merge pull request #3 from vais-ral/cleandemos
Tidy up all astra demos except demoIP
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--[-rwxr-xr-x] | Wrappers/Python/ccpi/astra/processors.py | 10 | ||||
-rwxr-xr-x | Wrappers/Python/wip/demo_sophiabeads.py | 12 | ||||
-rwxr-xr-x | Wrappers/Python/wip/simple_demo_astra.py | 210 | ||||
-rwxr-xr-x | Wrappers/Python/wip/simple_mc_demo.py | 125 |
4 files changed, 195 insertions, 162 deletions
diff --git a/Wrappers/Python/ccpi/astra/processors.py b/Wrappers/Python/ccpi/astra/processors.py index 16c1f78..02c9070 100755..100644 --- a/Wrappers/Python/ccpi/astra/processors.py +++ b/Wrappers/Python/ccpi/astra/processors.py @@ -3,7 +3,7 @@ from ccpi.astra.utils import convert_geometry_to_astra import astra -class AstraForwardProjector(DataSetProcessor): +class AstraForwardProjector(DataProcessor): '''AstraForwardProjector Forward project ImageData to AcquisitionData using ASTRA proj_id. @@ -25,7 +25,7 @@ class AstraForwardProjector(DataSetProcessor): 'device' : device } - #DataSetProcessor.__init__(self, **kwargs) + #DataProcessor.__init__(self, **kwargs) super(AstraForwardProjector, self).__init__(**kwargs) self.set_ImageGeometry(volume_geometry) @@ -77,7 +77,7 @@ class AstraForwardProjector(DataSetProcessor): #return AcquisitionData(array=DATA, geometry=self.sinogram_geometry) return DATA -class AstraBackProjector(DataSetProcessor): +class AstraBackProjector(DataProcessor): '''AstraBackProjector Back project AcquisitionData to ImageData using ASTRA proj_id. @@ -99,7 +99,7 @@ class AstraBackProjector(DataSetProcessor): 'device' : device } - #DataSetProcessor.__init__(self, **kwargs) + #DataProcessor.__init__(self, **kwargs) super(AstraBackProjector, self).__init__(**kwargs) self.set_ImageGeometry(volume_geometry) @@ -202,4 +202,4 @@ class AstraBackProjectorMC(AstraBackProjector): DATA.as_array()[k], self.proj_id) astra.data2d.delete(rec_id) - return IM
\ No newline at end of file + return IM diff --git a/Wrappers/Python/wip/demo_sophiabeads.py b/Wrappers/Python/wip/demo_sophiabeads.py index 33ce9ec..53a0bf8 100755 --- a/Wrappers/Python/wip/demo_sophiabeads.py +++ b/Wrappers/Python/wip/demo_sophiabeads.py @@ -1,4 +1,12 @@ +# This demo shows how to load a Nikon XTek micro-CT data set and reconstruct +# the central slice using the CGLS method. The SophiaBeads dataset with 256 +# projections is used as test data and can be obtained from here: +# https://zenodo.org/record/16474 +# The filename with full path to the .xtekct file should be given as string +# input to XTEKReader to load in the data. + +# Do all imports from ccpi.io.reader import XTEKReader import numpy as np import matplotlib.pyplot as plt @@ -7,7 +15,7 @@ from ccpi.astra.ops import AstraProjectorSimple from ccpi.optimisation.algs import CGLS # Set up reader object and read the data -datareader = XTEKReader("C:/Users/mbbssjj2/Documents/SophiaBeads_256_averaged/SophiaBeads_256_averaged.xtekct") +datareader = XTEKReader("REPLACE_THIS_BY_PATH_TO_DATASET/SophiaBeads_256_averaged.xtekct") data = datareader.getAcquisitionData() # Extract central slice, scale and negative-log transform @@ -56,7 +64,7 @@ Aop = AstraProjectorSimple(ig2d, ag2d,"gpu") # Set initial guess for CGLS reconstruction x_init = ImageData(np.zeros((N,N)),geometry=ig2d) -# Run CGLS reconstruction +# Run 50-iteration CGLS reconstruction num_iter = 50 x, it, timing, criter = CGLS(Aop,data2d,num_iter,x_init) diff --git a/Wrappers/Python/wip/simple_demo_astra.py b/Wrappers/Python/wip/simple_demo_astra.py index 26f3ff4..b4f0c61 100755 --- a/Wrappers/Python/wip/simple_demo_astra.py +++ b/Wrappers/Python/wip/simple_demo_astra.py @@ -1,189 +1,219 @@ -#import sys -#sys.path.append("..") +# This demo illustrates how ASTRA 2D projectors can be used with +# the modular optimisation framework. The demo sets up a 2D test case and +# demonstrates reconstruction using CGLS, as well as FISTA for least squares +# and 1-norm regularisation and FBPD for 1-norm and TV regularisation. + +# First make all imports from ccpi.framework import ImageData , ImageGeometry, AcquisitionGeometry from ccpi.optimisation.algs import FISTA, FBPD, CGLS -from ccpi.optimisation.funcs import Norm2sq, Norm1 , TV2D +from ccpi.optimisation.funcs import Norm2sq, Norm1, TV2D from ccpi.astra.ops import AstraProjectorSimple import numpy as np import matplotlib.pyplot as plt -test_case = 1 # 1=parallel2D, 2=cone2D +# Choose either a parallel-beam (1=parallel2D) or fan-beam (2=cone2D) test case +test_case = 1 -# Set up phantom +# Set up phantom size NxN by creating ImageGeometry, initialising the +# ImageData object with this geometry and empty array and finally put some +# data into its array, and display as image. N = 128 - - -vg = ImageGeometry(voxel_num_x=N,voxel_num_y=N) -Phantom = ImageData(geometry=vg) +ig = ImageGeometry(voxel_num_x=N,voxel_num_y=N) +Phantom = ImageData(geometry=ig) x = Phantom.as_array() x[round(N/4):round(3*N/4),round(N/4):round(3*N/4)] = 0.5 x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8)] = 1 plt.imshow(x) +plt.title('Phantom image') plt.show() -# Set up measurement geometry -angles_num = 20; # angles number +# Set up AcquisitionGeometry object to hold the parameters of the measurement +# setup geometry: # Number of angles, the actual angles from 0 to +# pi for parallel beam and 0 to 2pi for fanbeam, set the width of a detector +# pixel relative to an object pixel, the number of detector pixels, and the +# source-origin and origin-detector distance (here the origin-detector distance +# set to 0 to simulate a "virtual detector" with same detector pixel size as +# object pixel size). +angles_num = 20 +det_w = 1.0 +det_num = N +SourceOrig = 200 +OrigDetec = 0 if test_case==1: angles = np.linspace(0,np.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('parallel', + '2D', + angles, + det_num,det_w) elif test_case==2: angles = np.linspace(0,2*np.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('cone', + '2D', + angles, + det_num, + det_w, + dist_source_center=SourceOrig, + dist_center_detector=OrigDetec) else: NotImplemented -det_w = 1.0 -det_num = N -SourceOrig = 200 -OrigDetec = 0 +# Set up Operator object combining the ImageGeometry and AcquisitionGeometry +# wrapping calls to ASTRA as well as specifying whether to use CPU or GPU. +Aop = AstraProjectorSimple(ig, ag, 'gpu') -# Parallelbeam geometry test -if test_case==1: - pg = AcquisitionGeometry('parallel', - '2D', - angles, - det_num,det_w) -elif test_case==2: - pg = AcquisitionGeometry('cone', - '2D', - angles, - det_num, - det_w, - dist_source_center=SourceOrig, - dist_center_detector=OrigDetec) - -# ASTRA operator using volume and sinogram geometries -Aop = AstraProjectorSimple(vg, pg, 'cpu') - -# Unused old astra projector without geometry -# Aop_old = AstraProjector(det_w, det_num, SourceOrig, -# OrigDetec, angles, -# N,'fanbeam','gpu') - -# Try forward and backprojection +# Forward and backprojection are available as methods direct and adjoint. Here +# generate test data b and do simple backprojection to obtain z. b = Aop.direct(Phantom) -out2 = Aop.adjoint(b) +z = Aop.adjoint(b) plt.imshow(b.array) +plt.title('Simulated data') plt.show() -plt.imshow(out2.array) +plt.imshow(z.array) +plt.title('Backprojected data') plt.show() -# Create least squares object instance with projector and data. -f = Norm2sq(Aop,b,c=0.5) +# Using the test data b, different reconstruction methods can now be set up as +# demonstrated in the rest of this file. In general all methods need an initial +# guess and some algorithm options to be set: +x_init = ImageData(np.zeros(x.shape),geometry=ig) +opt = {'tol': 1e-4, 'iter': 1000} -# Initial guess -x_init = ImageData(np.zeros(x.shape),geometry=vg) +# First a CGLS reconstruction can be done: +x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, b, opt) + +plt.imshow(x_CGLS.array) +plt.title('CGLS') +plt.show() + +plt.semilogy(criter_CGLS) +plt.title('CGLS criterion') +plt.show() + +# CGLS solves the simple least-squares problem. The same problem can be solved +# by FISTA by setting up explicitly a least squares function object and using +# no regularisation: + +# Create least squares object instance with projector, test data and a constant +# coefficient of 0.5: +f = Norm2sq(Aop,b,c=0.5) # Run FISTA for least squares without regularization -x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None) +x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None,opt) plt.imshow(x_fista0.array) -plt.title('FISTA0') +plt.title('FISTA Least squares') plt.show() -# Now least squares plus 1-norm regularization +plt.semilogy(criter0) +plt.title('FISTA Least squares criterion') +plt.show() + +# FISTA can also solve regularised forms by specifying a second function object +# such as 1-norm regularisation with choice of regularisation parameter lam: + +# Create 1-norm function object lam = 0.1 g0 = Norm1(lam) # Run FISTA for least squares plus 1-norm function. -x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0) +x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0, opt) plt.imshow(x_fista1.array) -plt.title('FISTA1') +plt.title('FISTA Least squares plus 1-norm regularisation') plt.show() plt.semilogy(criter1) +plt.title('FISTA Least squares plus 1-norm regularisation criterion') plt.show() -# Run FBPD=Forward Backward Primal Dual method on least squares plus 1-norm -opt = {'tol': 1e-4, 'iter': 100} -x_fbpd1, it_fbpd1, timing_fbpd1, criter_fbpd1 = FBPD(x_init,None,f,g0,opt=opt) +# The least squares plus 1-norm regularisation problem can also be solved by +# other algorithms such as the Forward Backward Primal Dual algorithm. This +# algorithm minimises the sum of three functions and the least squares and +# 1-norm functions should be given as the second and third function inputs. +# In this test case, this algorithm requires more iterations to converge, so +# new options are specified. +opt_FBPD = {'tol': 1e-4, 'iter': 7000} +x_fbpd1, it_fbpd1, timing_fbpd1, criter_fbpd1 = FBPD(x_init,None,f,g0,opt_FBPD) plt.imshow(x_fbpd1.array) -plt.title('FBPD1') +plt.title('FBPD for least squares plus 1-norm regularisation') plt.show() plt.semilogy(criter_fbpd1) +plt.title('FBPD for least squares plus 1-norm regularisation criterion') plt.show() -# Now FBPD for least squares plus TV +# The FBPD algorithm can also be used conveniently for TV regularisation: + +# Specify TV function object #lamtv = 1 #gtv = TV2D(lamtv) - -#x_fbpdtv, it_fbpdtv, timing_fbpdtv, criter_fbpdtv = FBPD(x_init,None,f,gtv,opt=opt) - +# +#x_fbpdtv,it_fbpdtv,timing_fbpdtv,criter_fbpdtv=FBPD(x_init,None,f,gtv,opt_FBPD) +# #plt.imshow(x_fbpdtv.array) #plt.show() - +# #plt.semilogy(criter_fbpdtv) #plt.show() -# Run CGLS, which should agree with the FISTA0 -x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Aop, b, opt ) - -plt.imshow(x_CGLS.array) -plt.title('CGLS') -#plt.title('CGLS recon, compare FISTA0') -plt.show() - -plt.semilogy(criter_CGLS) -plt.title('CGLS criterion') -plt.show() - - -#%% - +# Compare all reconstruction and criteria clims = (0,1) cols = 3 rows = 2 current = 1 + fig = plt.figure() -# projections row a=fig.add_subplot(rows,cols,current) a.set_title('phantom {0}'.format(np.shape(Phantom.as_array()))) - imgplot = plt.imshow(Phantom.as_array(),vmin=clims[0],vmax=clims[1]) +plt.axis('off') current = current + 1 a=fig.add_subplot(rows,cols,current) -a.set_title('FISTA0') -imgplot = plt.imshow(x_fista0.as_array(),vmin=clims[0],vmax=clims[1]) +a.set_title('CGLS') +imgplot = plt.imshow(x_CGLS.as_array(),vmin=clims[0],vmax=clims[1]) +plt.axis('off') current = current + 1 a=fig.add_subplot(rows,cols,current) -a.set_title('FISTA1') -imgplot = plt.imshow(x_fista1.as_array(),vmin=clims[0],vmax=clims[1]) +a.set_title('FISTA LS') +imgplot = plt.imshow(x_fista0.as_array(),vmin=clims[0],vmax=clims[1]) +plt.axis('off') current = current + 1 a=fig.add_subplot(rows,cols,current) -a.set_title('FBPD1') -imgplot = plt.imshow(x_fbpd1.as_array(),vmin=clims[0],vmax=clims[1]) +a.set_title('FISTA LS+1') +imgplot = plt.imshow(x_fista1.as_array(),vmin=clims[0],vmax=clims[1]) +plt.axis('off') current = current + 1 a=fig.add_subplot(rows,cols,current) -a.set_title('CGLS') -imgplot = plt.imshow(x_CGLS.as_array(),vmin=clims[0],vmax=clims[1]) +a.set_title('FBPD LS+1') +imgplot = plt.imshow(x_fbpd1.as_array(),vmin=clims[0],vmax=clims[1]) +plt.axis('off') #current = current + 1 #a=fig.add_subplot(rows,cols,current) #a.set_title('FBPD TV') #imgplot = plt.imshow(x_fbpdtv.as_array(),vmin=clims[0],vmax=clims[1]) +#plt.axis('off') fig = plt.figure() -# projections row b=fig.add_subplot(1,1,1) b.set_title('criteria') -imgplot = plt.loglog(criter0 , label='FISTA0') -imgplot = plt.loglog(criter1 , label='FISTA1') -imgplot = plt.loglog(criter_fbpd1, label='FBPD1') imgplot = plt.loglog(criter_CGLS, label='CGLS') +imgplot = plt.loglog(criter0 , label='FISTA LS') +imgplot = plt.loglog(criter1 , label='FISTA LS+1') +imgplot = plt.loglog(criter_fbpd1, label='FBPD LS+1') #imgplot = plt.loglog(criter_fbpdtv, label='FBPD TV') -b.legend(loc='right') +b.legend(loc='lower left') plt.show() -#%%
\ No newline at end of file diff --git a/Wrappers/Python/wip/simple_mc_demo.py b/Wrappers/Python/wip/simple_mc_demo.py index 7369d8f..3b78eb3 100755 --- a/Wrappers/Python/wip/simple_mc_demo.py +++ b/Wrappers/Python/wip/simple_mc_demo.py @@ -1,6 +1,10 @@ -#import sys -#sys.path.append("..") +# This demo demonstrates a simple multichannel reconstruction case. A +# synthetic 3-channel phantom image is set up, data is simulated and the FISTA +# algorithm is used to compute least squares and least squares with 1-norm +# regularisation reconstructions. + +# Do all imports from ccpi.framework import ImageData, AcquisitionData, ImageGeometry, AcquisitionGeometry from ccpi.optimisation.algs import FISTA from ccpi.optimisation.funcs import Norm2sq, Norm1 @@ -9,15 +13,16 @@ from ccpi.astra.ops import AstraProjectorMC import numpy import matplotlib.pyplot as plt -test_case = 1 # 1=parallel2D, 2=cone2D +# Choose either a parallel-beam (1=parallel2D) or fan-beam (2=cone2D) test case +test_case = 1 -# Set up phantom +# Set up phantom NxN pixels and 3 channels. Set up the ImageGeometry and fill +# some test data in each of the channels. Display each channel as image. N = 128 -M = 100 numchannels = 3 -vg = ImageGeometry(voxel_num_x=N,voxel_num_y=N,channels=numchannels) -Phantom = ImageData(geometry=vg) +ig = ImageGeometry(voxel_num_x=N,voxel_num_y=N,channels=numchannels) +Phantom = ImageData(geometry=ig) x = Phantom.as_array() x[0 , round(N/4):round(3*N/4) , round(N/4):round(3*N/4) ] = 1.0 @@ -29,65 +34,52 @@ x[1 , round(N/8):round(7*N/8) , round(3*N/8):round(5*N/8)] = 1.2 x[2 , round(N/4):round(3*N/4) , round(N/4):round(3*N/4) ] = 1.5 x[2 , round(N/8):round(7*N/8) , round(3*N/8):round(5*N/8)] = 2.2 -#x = numpy.zeros((N,N,1,numchannels)) - -#x[round(N/4):round(3*N/4),round(N/4):round(3*N/4),:,0] = 1.0 -#x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8),:,0] = 2.0 - -#x[round(N/4):round(3*N/4),round(N/4):round(3*N/4),:,1] = 0.7 -#x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8),:,1] = 1.2 - -#x[round(N/4):round(3*N/4),round(N/4):round(3*N/4),:,2] = 1.5 -#x[round(N/8):round(7*N/8),round(3*N/8):round(5*N/8),:,2] = 2.2 - f, axarr = plt.subplots(1,numchannels) for k in numpy.arange(3): axarr[k].imshow(x[k],vmin=0,vmax=2.5) plt.show() -#vg = ImageGeometry(N,N,None, 1,1,None,channels=numchannels) - - -#Phantom = ImageData(x,geometry=vg) - -# Set up measurement geometry -angles_num = 20; # angles number - -if test_case==1: - angles = numpy.linspace(0,numpy.pi,angles_num,endpoint=False) -elif test_case==2: - angles = numpy.linspace(0,2*numpy.pi,angles_num,endpoint=False) -else: - NotImplemented - +# Set up AcquisitionGeometry object to hold the parameters of the measurement +# setup geometry: # Number of angles, the actual angles from 0 to +# pi for parallel beam and 0 to 2pi for fanbeam, set the width of a detector +# pixel relative to an object pixel, the number of detector pixels, and the +# source-origin and origin-detector distance (here the origin-detector distance +# set to 0 to simulate a "virtual detector" with same detector pixel size as +# object pixel size). +angles_num = 20 det_w = 1.0 det_num = N SourceOrig = 200 OrigDetec = 0 -# Parallelbeam geometry test if test_case==1: - pg = AcquisitionGeometry('parallel', - '2D', - angles, - det_num, - det_w, - channels=numchannels) + angles = numpy.linspace(0,numpy.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('parallel', + '2D', + angles, + det_num, + det_w, + channels=numchannels) elif test_case==2: - pg = AcquisitionGeometry('cone', - '2D', - angles, - det_num, - det_w, - dist_source_center=SourceOrig, - dist_center_detector=OrigDetec, - channels=numchannels) - -# ASTRA operator using volume and sinogram geometries -Aop = AstraProjectorMC(vg, pg, 'cpu') + angles = numpy.linspace(0,2*numpy.pi,angles_num,endpoint=False) + ag = AcquisitionGeometry('cone', + '2D', + angles, + det_num, + det_w, + dist_source_center=SourceOrig, + dist_center_detector=OrigDetec, + channels=numchannels) +else: + NotImplemented +# Set up Operator object combining the ImageGeometry and AcquisitionGeometry +# wrapping calls to ASTRA as well as specifying whether to use CPU or GPU. +Aop = AstraProjectorMC(ig, ag, 'gpu') -# Try forward and backprojection +# Forward and backprojection are available as methods direct and adjoint. Here +# generate test data b and do simple backprojection to obtain z. Applies +# channel by channel b = Aop.direct(Phantom) fb, axarrb = plt.subplots(1,numchannels) @@ -95,26 +87,27 @@ for k in numpy.arange(3): axarrb[k].imshow(b.as_array()[k],vmin=0,vmax=250) plt.show() -out2 = Aop.adjoint(b) +z = Aop.adjoint(b) fo, axarro = plt.subplots(1,numchannels) for k in range(3): - axarro[k].imshow(out2.as_array()[k],vmin=0,vmax=3500) + axarro[k].imshow(z.as_array()[k],vmin=0,vmax=3500) plt.show() -# Create least squares object instance with projector and data. -f = Norm2sq(Aop,b,c=0.5) - -# Initial guess -x_init = ImageData(numpy.zeros(x.shape),geometry=vg) - -# FISTA options +# Using the test data b, different reconstruction methods can now be set up as +# demonstrated in the rest of this file. In general all methods need an initial +# guess and some algorithm options to be set: +x_init = ImageData(np.zeros(x.shape),geometry=ig) opt = {'tol': 1e-4, 'iter': 200} +# Create least squares object instance with projector, test data and a constant +# coefficient of 0.5. Note it is least squares over all channels: +f = Norm2sq(Aop,b,c=0.5) + # Run FISTA for least squares without regularization x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None, opt) - +# Display reconstruction and criteration ff0, axarrf0 = plt.subplots(1,numchannels) for k in numpy.arange(3): axarrf0[k].imshow(x_fista0.as_array()[k],vmin=0,vmax=2.5) @@ -124,14 +117,16 @@ plt.semilogy(criter0) plt.title('Criterion vs iterations, least squares') plt.show() -# Now least squares plus 1-norm regularization +# FISTA can also solve regularised forms by specifying a second function object +# such as 1-norm regularisation with choice of regularisation parameter lam. +# Again the regulariser is over all channels: lam = 0.1 g0 = Norm1(lam) - # Run FISTA for least squares plus 1-norm function. x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0, opt) +# Display reconstruction and criteration ff1, axarrf1 = plt.subplots(1,numchannels) for k in numpy.arange(3): axarrf1[k].imshow(x_fista1.as_array()[k],vmin=0,vmax=2.5) @@ -139,4 +134,4 @@ plt.show() plt.semilogy(criter1) plt.title('Criterion vs iterations, least squares plus 1-norm regu') -plt.show()
\ No newline at end of file +plt.show() |