# ----------------------------------------------------------------------- # Copyright: 2010-2018, imec Vision Lab, University of Antwerp # 2013-2018, CWI, Amsterdam # # Contact: astra@astra-toolbox.com # Website: http://www.astra-toolbox.com/ # # This file is part of the ASTRA Toolbox. # # # The ASTRA Toolbox is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # The ASTRA Toolbox is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. # # ----------------------------------------------------------------------- from . import data2d from . import data3d from . import projector from . import projector3d from . import creators from . import algorithm from . import functions import numpy as np from six.moves import reduce try: from six.moves import range except ImportError: # six 1.3.0 from six.moves import xrange as range import operator import scipy.sparse.linalg class OpTomo(scipy.sparse.linalg.LinearOperator): """Object that imitates a projection matrix with a given projector. This object can do forward projection by using the ``*`` operator:: W = astra.OpTomo(proj_id) fp = W*image bp = W.T*sinogram It can also be used in minimization methods of the :mod:`scipy.sparse.linalg` module:: W = astra.OpTomo(proj_id) output = scipy.sparse.linalg.lsqr(W,sinogram) :param proj_id: ID to a projector. :type proj_id: :class:`int` """ def __init__(self,proj_id): self.dtype = np.float32 try: self.vg = projector.volume_geometry(proj_id) self.pg = projector.projection_geometry(proj_id) self.data_mod = data2d self.appendString = "" if projector.is_cuda(proj_id): self.appendString += "_CUDA" except Exception: self.vg = projector3d.volume_geometry(proj_id) self.pg = projector3d.projection_geometry(proj_id) self.data_mod = data3d self.appendString = "3D" if projector3d.is_cuda(proj_id): self.appendString += "_CUDA" self.vshape = functions.geom_size(self.vg) self.vsize = reduce(operator.mul,self.vshape) self.sshape = functions.geom_size(self.pg) self.ssize = reduce(operator.mul,self.sshape) self.shape = (self.ssize, self.vsize) self.proj_id = proj_id self.transposeOpTomo = OpTomoTranspose(self) try: self.T = self.transposeOpTomo except AttributeError: # Scipy >= 0.16 defines self.T using self._transpose() pass def _transpose(self): return self.transposeOpTomo def __checkArray(self, arr, shp): if len(arr.shape)==1: arr = arr.reshape(shp) if arr.dtype != np.float32: arr = arr.astype(np.float32) if arr.flags['C_CONTIGUOUS']==False: arr = np.ascontiguousarray(arr) return arr def _matvec(self,v): """Implements the forward operator. :param v: Volume to forward project. :type v: :class:`numpy.ndarray` """ return self.FP(v, out=None).ravel() def rmatvec(self,s): """Implements the transpose operator. :param s: The projection data. :type s: :class:`numpy.ndarray` """ return self.BP(s, out=None).ravel() def __mul__(self,v): """Provides easy forward operator by *. :param v: Volume to forward project. :type v: :class:`numpy.ndarray` """ # Catch the case of a forward projection of a 2D/3D image if isinstance(v, np.ndarray) and v.shape==self.vshape: return self._matvec(v) return scipy.sparse.linalg.LinearOperator.__mul__(self, v) def reconstruct(self, method, s, iterations=1, extraOptions = None): """Reconstruct an object. :param method: Method to use for reconstruction. :type method: :class:`string` :param s: The projection data. :type s: :class:`numpy.ndarray` :param iterations: Number of iterations to use. :type iterations: :class:`int` :param extraOptions: Extra options to use during reconstruction (i.e. for cfg['option']). :type extraOptions: :class:`dict` """ if extraOptions is None: extraOptions={} s = self.__checkArray(s, self.sshape) sid = self.data_mod.link('-sino',self.pg,s) v = np.zeros(self.vshape,dtype=np.float32) vid = self.data_mod.link('-vol',self.vg,v) cfg = creators.astra_dict(method) cfg['ProjectionDataId'] = sid cfg['ReconstructionDataId'] = vid cfg['ProjectorId'] = self.proj_id cfg['option'] = extraOptions alg_id = algorithm.create(cfg) algorithm.run(alg_id,iterations) algorithm.delete(alg_id) self.data_mod.delete([vid,sid]) return v def FP(self,v,out=None): """Perform forward projection. Output must have the right 2D/3D shape. Input may also be flattened. Output must also be contiguous and float32. This isn't required for the input, but it is more efficient if it is. :param v: Volume to forward project. :type v: :class:`numpy.ndarray` :param out: Array to store result in. :type out: :class:`numpy.ndarray` """ v = self.__checkArray(v, self.vshape) vid = self.data_mod.link('-vol',self.vg,v) if out is None: out = np.zeros(self.sshape,dtype=np.float32) sid = self.data_mod.link('-sino',self.pg,out) cfg = creators.astra_dict('FP'+self.appendString) cfg['ProjectionDataId'] = sid cfg['VolumeDataId'] = vid cfg['ProjectorId'] = self.proj_id fp_id = algorithm.create(cfg) algorithm.run(fp_id) algorithm.delete(fp_id) self.data_mod.delete([vid,sid]) return out def BP(self,s,out=None): """Perform backprojection. Output must have the right 2D/3D shape. Input may also be flattened. Output must also be contiguous and float32. This isn't required for the input, but it is more efficient if it is. :param : The projection data. :type s: :class:`numpy.ndarray` :param out: Array to store result in. :type out: :class:`numpy.ndarray` """ s = self.__checkArray(s, self.sshape) sid = self.data_mod.link('-sino',self.pg,s) if out is None: out = np.zeros(self.vshape,dtype=np.float32) vid = self.data_mod.link('-vol',self.vg,out) cfg = creators.astra_dict('BP'+self.appendString) cfg['ProjectionDataId'] = sid cfg['ReconstructionDataId'] = vid cfg['ProjectorId'] = self.proj_id bp_id = algorithm.create(cfg) algorithm.run(bp_id) algorithm.delete(bp_id) self.data_mod.delete([vid,sid]) return out class OpTomoTranspose(scipy.sparse.linalg.LinearOperator): """This object provides the transpose operation (``.T``) of the OpTomo object. Do not use directly, since it can be accessed as member ``.T`` of an :class:`OpTomo` object. """ def __init__(self,parent): self.parent = parent self.dtype = np.float32 self.shape = (parent.shape[1], parent.shape[0]) try: self.T = self.parent except AttributeError: # Scipy >= 0.16 defines self.T using self._transpose() pass def _matvec(self, s): return self.parent.rmatvec(s) def rmatvec(self, v): return self.parent.matvec(v) def _transpose(self): return self.parent def __mul__(self,s): # Catch the case of a backprojection of 2D/3D data if isinstance(s, np.ndarray) and s.shape==self.parent.sshape: return self._matvec(s) return scipy.sparse.linalg.LinearOperator.__mul__(self, s)