%-------------------------------------------------------------------------- % This file is part of the ASTRA Toolbox % % Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp % 2014-2016, CWI, Amsterdam % License: Open Source under GPLv3 % Contact: astra@uantwerpen.be % Website: http://www.astra-toolbox.com/ %-------------------------------------------------------------------------- classdef DARToptimizerBoneStudy < handle %---------------------------------------------------------------------- properties (SetAccess=public,GetAccess=public) % optimization options max_evals = 100; tolerance = 0.1; display = 'off'; % DART options DART_iterations = 50; D_base = []; end %---------------------------------------------------------------------- properties (SetAccess=private,GetAccess=public) stats = struct(); end %---------------------------------------------------------------------- methods (Access=public) %------------------------------------------------------------------ % Constructor function this = DARToptimizerBoneStudy(D_base) this.D_base = D_base; this.stats.params = {}; this.stats.values = []; this.stats.rmse = []; this.stats.f_250 = []; this.stats.f_100 = []; this.stats.w_250 = []; this.stats.w_125 = []; end %------------------------------------------------------------------ function opt_values = run(this, params, initial_values) if nargin < 3 for i = 1:numel(params) initial_values(i) = eval(['this.D_base.' params{i} ';']); end end % fminsearch options = optimset('display', this.display, 'MaxFunEvals', this.max_evals, 'TolX', this.tolerance); opt_values = fminsearch(@optim_func, initial_values, options, this.D_base, params, this); % save to D_base for i = 1:numel(params) eval(sprintf('this.D_base.%s = %d;',params{i}, opt_values(i))); end end %------------------------------------------------------------------ end end %-------------------------------------------------------------------------- function rmse = optim_func(values, D_base, params, Optim) % copy DART D = D_base.deepcopy(); % set parameters for i = 1:numel(params) eval(sprintf('D.%s = %d;',params{i}, values(i))); D.output.pre = [D.output.pre num2str(values(i)) '_']; end % evaluate if D.initialized == 0 D.initialize(); end rng('default'); D.iterate(Optim.DART_iterations); % compute rmse ROI = load('roi.mat'); [rmse, f_250, f_100, w_250, w_125] = compute_rmse(D.S, ROI); %projection = D.tomography.project(D.S); %proj_diff = sum((projection(:) - D.base.sinogram(:)).^2); % save Optim.stats.params{end+1} = params; Optim.stats.values(end+1,:) = values; Optim.stats.rmse(end+1) = rmse; Optim.stats.f_250(end+1) = f_250; Optim.stats.f_100(end+1) = f_100; Optim.stats.w_250(end+1) = w_250; Optim.stats.w_125(end+1) = w_125; disp([num2str(values) ': ' num2str(rmse)]); end