%-------------------------------------------------------------------------- % This file is part of the ASTRA Toolbox % % Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp % 2014-2016, CWI, Amsterdam % License: Open Source under GPLv3 % Contact: astra@uantwerpen.be % Website: http://www.astra-toolbox.com/ %-------------------------------------------------------------------------- classdef DARToptimizer < handle %---------------------------------------------------------------------- properties (SetAccess=public,GetAccess=public) % optimization options max_evals = 100; % SETTING: Maximum number of function evaluations during optimization. tolerance = 0.1; % SETTING: Minimum tolerance to achieve. display = 'off'; % SETTING: Optimization output. {'off','on','iter'} verbose = 'yes'; % SETTING: verbose? {'yes','no} metric = ProjDiffOptimFunc(); % SETTING: Optimization object. Default: ProjDiffOptimFunc. % DART options DART_iterations = 20; % SETTING: number of DART iterations in each evaluation. D_base = []; end %---------------------------------------------------------------------- properties (SetAccess=private,GetAccess=public) stats = Statistics(); end %---------------------------------------------------------------------- methods (Access=public) %------------------------------------------------------------------ % Constructor function this = DARToptimizer(D_base) this.D_base = D_base; % statistics this.stats = Statistics(); this.stats.register('params'); this.stats.register('values'); this.stats.register('score'); end %------------------------------------------------------------------ function opt_values = run(this, params, initial_values) if nargin < 3 for i = 1:numel(params) initial_values(i) = eval(['this.D_base.' params{i} ';']); end end % fminsearch options = optimset('display', this.display, 'MaxFunEvals', this.max_evals, 'TolX', this.tolerance); opt_values = fminsearch(@this.optim_func, initial_values, options, params); % save to D_base for i = 1:numel(params) eval(sprintf('this.D_base.%s = %d;',params{i}, opt_values(i))); end end %------------------------------------------------------------------ end %---------------------------------------------------------------------- methods (Access=protected) %------------------------------------------------------------------ function score = optim_func(this, values, params) % copy DART D = this.D_base.deepcopy(); % set parameters for i = 1:numel(params) eval(sprintf('D.%s = %d;',params{i}, values(i))); D.output.pre = [D.output.pre num2str(values(i)) '_']; end % evaluate if D.initialized == 0 D.initialize(); end rng('default'); D.iterate(this.DART_iterations); % compute score score = this.metric.calculate(D, this); % statistics this.stats.add('params',params); this.stats.add('values',values); this.stats.add('score',score); % output if strcmp(this.verbose,'yes') disp([num2str(values) ': ' num2str(score)]); end end %------------------------------------------------------------------ end end