/* ----------------------------------------------------------------------- Copyright: 2010-2018, imec Vision Lab, University of Antwerp 2014-2018, CWI, Amsterdam Contact: astra@astra-toolbox.com Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- */ #define policy_weight(p,rayindex,volindex,weight) do { if (p.pixelPrior(volindex)) { p.addWeight(rayindex, volindex, weight); p.pixelPosterior(volindex); } } while (false) template void CParallelBeamDistanceDrivenProjector2D::project(Policy& p) { projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(), 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CParallelBeamDistanceDrivenProjector2D::projectSingleProjection(int _iProjection, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CParallelBeamDistanceDrivenProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, _iDetector, _iDetector + 1, p); } template void CParallelBeamDistanceDrivenProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { // get vector geometry const CParallelVecProjectionGeometry2D* pVecProjectionGeometry; if (dynamic_cast(m_pProjectionGeometry)) { pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry)->toVectorGeometry(); } else { pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry); } // precomputations const float32 pixelLengthX = m_pVolumeGeometry->getPixelLengthX(); const float32 pixelLengthY = m_pVolumeGeometry->getPixelLengthY(); const float32 inv_pixelLengthX = 1.0f / pixelLengthX; const float32 inv_pixelLengthY = 1.0f / pixelLengthY; const int colCount = m_pVolumeGeometry->getGridColCount(); const int rowCount = m_pVolumeGeometry->getGridRowCount(); // Performance note: // This is not a very well optimizated version of the distance driven // projector. The CPU projector model in ASTRA requires ray-driven iteration, // which limits re-use of intermediate computations. // loop angles for (int iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { const SParProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle]; float32 detSize = sqrt(proj->fDetUX * proj->fDetUX + proj->fDetUY * proj->fDetUY); const bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY); const float32 Ex = m_pVolumeGeometry->getWindowMinX() + pixelLengthX*0.5f; const float32 Ey = m_pVolumeGeometry->getWindowMaxY() - pixelLengthY*0.5f; // loop detectors for (int iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { const int iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; const float32 Dx = proj->fDetSX + (iDetector+0.5f) * proj->fDetUX; const float32 Dy = proj->fDetSY + (iDetector+0.5f) * proj->fDetUY; if (vertical && true) { const float32 RxOverRy = proj->fRayX/proj->fRayY; // TODO: Determine det/pixel scaling factors const float32 lengthPerRow = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY(); const float32 deltac = -pixelLengthY * RxOverRy * inv_pixelLengthX; const float32 deltad = fabs((proj->fDetUX - proj->fDetUY * RxOverRy) * inv_pixelLengthX); // calculate c for row 0 float32 c = (Dx + (Ey - Dy)*RxOverRy - Ex) * inv_pixelLengthX + 0.5f; // loop rows for (int row = 0; row < rowCount; ++row, c+= deltac) { // horizontal extent of ray in center of this row: // [ c - deltad/2 , c + deltad/2 ] // |-gapBegin-*---|------|----*-gapEnd-| // * = ray extent intercepts; c - deltad/2 and c + deltad/2 // | = pixel column edges const int colBegin = (int)floor(c - deltad/2.0f); const int colEnd = (int)ceil(c + deltad/2.0f); // TODO: Optimize volume edge checks int iVolumeIndex = row * colCount + colBegin; if (colBegin + 1 == colEnd) { if (colBegin >= 0 && colBegin < colCount) policy_weight(p, iRayIndex, iVolumeIndex, deltad * lengthPerRow); } else { const float gapBegin = (c - deltad/2.0f) - (float32)colBegin; const float gapEnd = (float32)colEnd - (c + deltad/2.0f); float tot = 1.0f - gapBegin; if (colBegin >= 0 && colBegin < colCount) { policy_weight(p, iRayIndex, iVolumeIndex, (1.0f - gapBegin) * lengthPerRow); } iVolumeIndex++; for (int col = colBegin + 1; col + 1 < colEnd; ++col, ++iVolumeIndex) { tot += 1.0f; if (col >= 0 && col < colCount) { policy_weight(p, iRayIndex, iVolumeIndex, lengthPerRow); } } assert(iVolumeIndex == row * colCount + colEnd - 1); tot += 1.0f - gapEnd; if (colEnd > 0 && colEnd <= colCount) { policy_weight(p, iRayIndex, iVolumeIndex, (1.0f - gapEnd) * lengthPerRow); } assert(fabs(tot - deltad) < 0.0001); } } } else if (!vertical && true) { const float32 RyOverRx = proj->fRayY/proj->fRayX; // TODO: Determine det/pixel scaling factors const float32 lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY(); const float32 deltar = -pixelLengthX * RyOverRx * inv_pixelLengthY; const float32 deltad = fabs((proj->fDetUY - proj->fDetUX * RyOverRx) * inv_pixelLengthY); // calculate r for col 0 float32 r = -(Dy + (Ex - Dx)*RyOverRx - Ey) * inv_pixelLengthY + 0.5f; // loop columns for (int col = 0; col < colCount; ++col, r+= deltar) { // vertical extent of ray in center of this column: // [ r - deltad/2 , r + deltad/2 ] const int rowBegin = (int)floor(r - deltad/2.0f); const int rowEnd = (int)ceil(r + deltad/2.0f); // TODO: Optimize volume edge checks int iVolumeIndex = rowBegin * colCount + col; if (rowBegin + 1 == rowEnd) { if (rowBegin >= 0 && rowBegin < rowCount) policy_weight(p, iRayIndex, iVolumeIndex, deltad * lengthPerCol); } else { const float gapBegin = (r - deltad/2.0f) - (float32)rowBegin; const float gapEnd = (float32)rowEnd - (r + deltad/2.0f); float tot = 1.0f - gapBegin; if (rowBegin >= 0 && rowBegin < rowCount) { policy_weight(p, iRayIndex, iVolumeIndex, (1.0f - gapBegin) * lengthPerCol); } iVolumeIndex += colCount; for (int row = rowBegin + 1; row + 1 < rowEnd; ++row, iVolumeIndex += colCount) { tot += 1.0f; if (row >= 0 && row < rowCount) { policy_weight(p, iRayIndex, iVolumeIndex, lengthPerCol); } } assert(iVolumeIndex == (rowEnd - 1) * colCount + col); tot += 1.0f - gapEnd; if (rowEnd > 0 && rowEnd <= rowCount) { policy_weight(p, iRayIndex, iVolumeIndex, (1.0f - gapEnd) * lengthPerCol); } assert(fabs(tot - deltad) < 0.0001); } } } // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } } if (dynamic_cast(m_pProjectionGeometry)) delete pVecProjectionGeometry; }