/* ----------------------------------------------------------------------- Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp 2014-2016, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- */ #include #include #include #include #include #include "util3d.h" #ifdef STANDALONE #include "cone_fp.h" #include "testutil.h" #endif #include "dims3d.h" typedef texture texture3D; static texture3D gT_coneProjTexture; namespace astraCUDA3d { #define ZSIZE 6 static const unsigned int g_volBlockZ = ZSIZE; static const unsigned int g_anglesPerBlock = 32; static const unsigned int g_volBlockX = 16; static const unsigned int g_volBlockY = 32; static const unsigned g_MaxAngles = 1024; __constant__ float gC_C[12*g_MaxAngles]; bool bindProjDataTexture(const cudaArray* array) { cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(); gT_coneProjTexture.addressMode[0] = cudaAddressModeBorder; gT_coneProjTexture.addressMode[1] = cudaAddressModeBorder; gT_coneProjTexture.addressMode[2] = cudaAddressModeBorder; gT_coneProjTexture.filterMode = cudaFilterModeLinear; gT_coneProjTexture.normalized = false; cudaBindTextureToArray(gT_coneProjTexture, array, channelDesc); // TODO: error value? return true; } //__launch_bounds__(32*16, 4) template __global__ void dev_cone_BP(void* D_volData, unsigned int volPitch, int startAngle, int angleOffset, const astraCUDA3d::SDimensions3D dims, float fOutputScale) { float* volData = (float*)D_volData; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles - angleOffset) endAngle = dims.iProjAngles - angleOffset; // threadIdx: x = rel x // y = rel y // blockIdx: x = x + y // y = z const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x; const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y; if (X >= dims.iVolX) return; if (Y >= dims.iVolY) return; const int startZ = blockIdx.y * g_volBlockZ; const float fX = X - 0.5f*dims.iVolX + 0.5f; const float fY = Y - 0.5f*dims.iVolY + 0.5f; const float fZ = startZ - 0.5f*dims.iVolZ + 0.5f; float Z[ZSIZE]; for(int i=0; i < ZSIZE; i++) Z[i] = 0.0f; { float fAngle = startAngle + angleOffset + 0.5f; for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f) { float4 fCu = make_float4(gC_C[12*angle+0], gC_C[12*angle+1], gC_C[12*angle+2], gC_C[12*angle+3]); float4 fCv = make_float4(gC_C[12*angle+4], gC_C[12*angle+5], gC_C[12*angle+6], gC_C[12*angle+7]); float4 fCd = make_float4(gC_C[12*angle+8], gC_C[12*angle+9], gC_C[12*angle+10], gC_C[12*angle+11]); float fUNum = fCu.w + fX * fCu.x + fY * fCu.y + fZ * fCu.z; float fVNum = fCv.w + fX * fCv.x + fY * fCv.y + fZ * fCv.z; float fDen = fCd.w + fX * fCd.x + fY * fCd.y + fZ * fCd.z; // fCd.w = -|| u v s || (determinant of 3x3 matrix with cols u,v,s) // fDen = || u v (x-s) || float fU,fV, fr; for (int idx = 0; idx < ZSIZE; idx++) { fr = __fdividef(1.0f, fDen); fU = fUNum * fr; fV = fVNum * fr; float fVal = tex3D(gT_coneProjTexture, fU, fAngle, fV); if (FDKWEIGHT) { // The correct factor here is this one: // Z[idx] += (fr*fCd.w)*(fr*fCd.w)*fVal; // This is the square of the inverse magnification factor // from fX,fY,fZ to the detector. // Since we are assuming we have a circular cone // beam trajectory, fCd.w is constant, and we instead // multiply by fCd.w*fCd.w in the FDK preweighting step. Z[idx] += fr*fr*fVal; } else Z[idx] += fVal; fUNum += fCu.z; fVNum += fCv.z; fDen += fCd.z; } } } int endZ = ZSIZE; if (endZ > dims.iVolZ - startZ) endZ = dims.iVolZ - startZ; for(int i=0; i < endZ; i++) volData[((startZ+i)*dims.iVolY+Y)*volPitch+X] += Z[i] * fOutputScale; } //End kernel // supersampling version __global__ void dev_cone_BP_SS(void* D_volData, unsigned int volPitch, int startAngle, int angleOffset, const SDimensions3D dims, int iRaysPerVoxelDim, float fOutputScale) { float* volData = (float*)D_volData; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles - angleOffset) endAngle = dims.iProjAngles - angleOffset; // threadIdx: x = rel x // y = rel y // blockIdx: x = x + y // y = z // TO TRY: precompute part of detector intersection formulas in shared mem? // TO TRY: inner loop over z, gather ray values in shared mem const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x; const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y; if (X >= dims.iVolX) return; if (Y >= dims.iVolY) return; const int startZ = blockIdx.y * g_volBlockZ; int endZ = startZ + g_volBlockZ; if (endZ > dims.iVolZ) endZ = dims.iVolZ; float fX = X - 0.5f*dims.iVolX + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim; float fY = Y - 0.5f*dims.iVolY + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim; float fZ = startZ - 0.5f*dims.iVolZ + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim; const float fSubStep = 1.0f/iRaysPerVoxelDim; fOutputScale /= (iRaysPerVoxelDim*iRaysPerVoxelDim*iRaysPerVoxelDim); for (int Z = startZ; Z < endZ; ++Z, fZ += 1.0f) { float fVal = 0.0f; float fAngle = startAngle + angleOffset + 0.5f; for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f) { const float fCux = gC_C[12*angle+0]; const float fCuy = gC_C[12*angle+1]; const float fCuz = gC_C[12*angle+2]; const float fCuc = gC_C[12*angle+3]; const float fCvx = gC_C[12*angle+4]; const float fCvy = gC_C[12*angle+5]; const float fCvz = gC_C[12*angle+6]; const float fCvc = gC_C[12*angle+7]; const float fCdx = gC_C[12*angle+8]; const float fCdy = gC_C[12*angle+9]; const float fCdz = gC_C[12*angle+10]; const float fCdc = gC_C[12*angle+11]; float fXs = fX; for (int iSubX = 0; iSubX < iRaysPerVoxelDim; ++iSubX) { float fYs = fY; for (int iSubY = 0; iSubY < iRaysPerVoxelDim; ++iSubY) { float fZs = fZ; for (int iSubZ = 0; iSubZ < iRaysPerVoxelDim; ++iSubZ) { const float fUNum = fCuc + fXs * fCux + fYs * fCuy + fZs * fCuz; const float fVNum = fCvc + fXs * fCvx + fYs * fCvy + fZs * fCvz; const float fDen = fCdc + fXs * fCdx + fYs * fCdy + fZs * fCdz; const float fU = fUNum / fDen; const float fV = fVNum / fDen; fVal += tex3D(gT_coneProjTexture, fU, fV, fAngle); fZs += fSubStep; } fYs += fSubStep; } fXs += fSubStep; } } volData[(Z*dims.iVolY+Y)*volPitch+X] += fVal * fOutputScale; } } bool ConeBP_Array(cudaPitchedPtr D_volumeData, cudaArray *D_projArray, const SDimensions3D& dims, const SConeProjection* angles, const SProjectorParams3D& params) { bindProjDataTexture(D_projArray); float fOutputScale; if (params.bFDKWeighting) fOutputScale = params.fOutputScale / (params.fVolScaleX * params.fVolScaleY * params.fVolScaleZ); else fOutputScale = params.fOutputScale * (params.fVolScaleX * params.fVolScaleY * params.fVolScaleZ); for (unsigned int th = 0; th < dims.iProjAngles; th += g_MaxAngles) { unsigned int angleCount = g_MaxAngles; if (th + angleCount > dims.iProjAngles) angleCount = dims.iProjAngles - th; // transfer angles to constant memory float* tmp = new float[12*angleCount]; // NB: We increment angles at the end of the loop body. #define TRANSFER_TO_CONSTANT(expr,name) do { for (unsigned int i = 0; i < angleCount; ++i) tmp[12*i+name] = (expr) ; } while (0) TRANSFER_TO_CONSTANT( (angles[i].fDetSZ - angles[i].fSrcZ)*angles[i].fDetVY - (angles[i].fDetSY - angles[i].fSrcY)*angles[i].fDetVZ , 0 ); TRANSFER_TO_CONSTANT( (angles[i].fDetSX - angles[i].fSrcX)*angles[i].fDetVZ -(angles[i].fDetSZ - angles[i].fSrcZ)*angles[i].fDetVX , 1 ); TRANSFER_TO_CONSTANT( (angles[i].fDetSY - angles[i].fSrcY)*angles[i].fDetVX - (angles[i].fDetSX - angles[i].fSrcX)*angles[i].fDetVY , 2 ); TRANSFER_TO_CONSTANT( (angles[i].fDetSY*angles[i].fDetVZ - angles[i].fDetSZ*angles[i].fDetVY)*angles[i].fSrcX - (angles[i].fDetSX*angles[i].fDetVZ - angles[i].fDetSZ*angles[i].fDetVX)*angles[i].fSrcY + (angles[i].fDetSX*angles[i].fDetVY - angles[i].fDetSY*angles[i].fDetVX)*angles[i].fSrcZ , 3 ); TRANSFER_TO_CONSTANT( (angles[i].fDetSY - angles[i].fSrcY)*angles[i].fDetUZ-(angles[i].fDetSZ - angles[i].fSrcZ)*angles[i].fDetUY, 4 ); TRANSFER_TO_CONSTANT( (angles[i].fDetSZ - angles[i].fSrcZ)*angles[i].fDetUX - (angles[i].fDetSX - angles[i].fSrcX)*angles[i].fDetUZ , 5 ); TRANSFER_TO_CONSTANT((angles[i].fDetSX - angles[i].fSrcX)*angles[i].fDetUY-(angles[i].fDetSY - angles[i].fSrcY)*angles[i].fDetUX , 6 ); TRANSFER_TO_CONSTANT( -(angles[i].fDetSY*angles[i].fDetUZ - angles[i].fDetSZ*angles[i].fDetUY)*angles[i].fSrcX + (angles[i].fDetSX*angles[i].fDetUZ - angles[i].fDetSZ*angles[i].fDetUX)*angles[i].fSrcY - (angles[i].fDetSX*angles[i].fDetUY - angles[i].fDetSY*angles[i].fDetUX)*angles[i].fSrcZ , 7 ); TRANSFER_TO_CONSTANT( angles[i].fDetUY*angles[i].fDetVZ - angles[i].fDetUZ*angles[i].fDetVY , 8 ); TRANSFER_TO_CONSTANT( angles[i].fDetUZ*angles[i].fDetVX - angles[i].fDetUX*angles[i].fDetVZ , 9 ); TRANSFER_TO_CONSTANT( angles[i].fDetUX*angles[i].fDetVY - angles[i].fDetUY*angles[i].fDetVX , 10 ); TRANSFER_TO_CONSTANT( -angles[i].fSrcX * (angles[i].fDetUY*angles[i].fDetVZ - angles[i].fDetUZ*angles[i].fDetVY) - angles[i].fSrcY * (angles[i].fDetUZ*angles[i].fDetVX - angles[i].fDetUX*angles[i].fDetVZ) - angles[i].fSrcZ * (angles[i].fDetUX*angles[i].fDetVY - angles[i].fDetUY*angles[i].fDetVX) , 11 ); #undef TRANSFER_TO_CONSTANT cudaMemcpyToSymbol(gC_C, tmp, angleCount*12*sizeof(float), 0, cudaMemcpyHostToDevice); delete[] tmp; dim3 dimBlock(g_volBlockX, g_volBlockY); dim3 dimGrid(((dims.iVolX/1+g_volBlockX-1)/(g_volBlockX))*((dims.iVolY/1+1*g_volBlockY-1)/(1*g_volBlockY)), (dims.iVolZ+g_volBlockZ-1)/g_volBlockZ); // timeval t; // tic(t); for (unsigned int i = 0; i < angleCount; i += g_anglesPerBlock) { // printf("Calling BP: %d, %dx%d, %dx%d to %p\n", i, dimBlock.x, dimBlock.y, dimGrid.x, dimGrid.y, (void*)D_volumeData.ptr); if (params.bFDKWeighting) dev_cone_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), i, th, dims, fOutputScale); else if (params.iRaysPerVoxelDim == 1) dev_cone_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), i, th, dims, fOutputScale); else dev_cone_BP_SS<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), i, th, dims, params.iRaysPerVoxelDim, fOutputScale); } cudaTextForceKernelsCompletion(); angles = angles + angleCount; // printf("%f\n", toc(t)); } return true; } bool ConeBP(cudaPitchedPtr D_volumeData, cudaPitchedPtr D_projData, const SDimensions3D& dims, const SConeProjection* angles, const SProjectorParams3D& params) { // transfer projections to array cudaArray* cuArray = allocateProjectionArray(dims); transferProjectionsToArray(D_projData, cuArray, dims); bool ret = ConeBP_Array(D_volumeData, cuArray, dims, angles, params); cudaFreeArray(cuArray); return ret; } } #ifdef STANDALONE int main() { astraCUDA3d::SDimensions3D dims; dims.iVolX = 512; dims.iVolY = 512; dims.iVolZ = 512; dims.iProjAngles = 496; dims.iProjU = 512; dims.iProjV = 512; dims.iRaysPerDetDim = 1; dims.iRaysPerVoxelDim = 1; cudaExtent extentV; extentV.width = dims.iVolX*sizeof(float); extentV.height = dims.iVolY; extentV.depth = dims.iVolZ; cudaPitchedPtr volData; // pitch, ptr, xsize, ysize cudaMalloc3D(&volData, extentV); cudaExtent extentP; extentP.width = dims.iProjU*sizeof(float); extentP.height = dims.iProjAngles; extentP.depth = dims.iProjV; cudaPitchedPtr projData; // pitch, ptr, xsize, ysize cudaMalloc3D(&projData, extentP); cudaMemset3D(projData, 0, extentP); #if 0 float* slice = new float[256*256]; cudaPitchedPtr ptr; ptr.ptr = slice; ptr.pitch = 256*sizeof(float); ptr.xsize = 256*sizeof(float); ptr.ysize = 256; for (unsigned int i = 0; i < 256*256; ++i) slice[i] = 1.0f; for (unsigned int i = 0; i < 256; ++i) { cudaExtent extentS; extentS.width = dims.iVolX*sizeof(float); extentS.height = dims.iVolY; extentS.depth = 1; cudaPos sp = { 0, 0, 0 }; cudaPos dp = { 0, 0, i }; cudaMemcpy3DParms p; p.srcArray = 0; p.srcPos = sp; p.srcPtr = ptr; p.dstArray = 0; p.dstPos = dp; p.dstPtr = volData; p.extent = extentS; p.kind = cudaMemcpyHostToDevice; cudaMemcpy3D(&p); #if 0 if (i == 128) { for (unsigned int j = 0; j < 256*256; ++j) slice[j] = 0.0f; } #endif } #endif astraCUDA3d::SConeProjection angle[512]; angle[0].fSrcX = -5120; angle[0].fSrcY = 0; angle[0].fSrcZ = 0; angle[0].fDetSX = 512; angle[0].fDetSY = -256; angle[0].fDetSZ = -256; angle[0].fDetUX = 0; angle[0].fDetUY = 1; angle[0].fDetUZ = 0; angle[0].fDetVX = 0; angle[0].fDetVY = 0; angle[0].fDetVZ = 1; #define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0) for (int i = 1; i < 512; ++i) { angle[i] = angle[0]; ROTATE0(Src, i, i*2*M_PI/512); ROTATE0(DetS, i, i*2*M_PI/512); ROTATE0(DetU, i, i*2*M_PI/512); ROTATE0(DetV, i, i*2*M_PI/512); } #undef ROTATE0 #if 0 astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f); #endif #if 0 float* bufs = new float[180*512]; for (int i = 0; i < 512; ++i) { cudaMemcpy(bufs, ((float*)projData.ptr)+180*512*i, 180*512*sizeof(float), cudaMemcpyDeviceToHost); printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize); char fname[20]; sprintf(fname, "sino%03d.png", i); saveImage(fname, 180, 512, bufs); } float* bufp = new float[512*512]; for (int i = 0; i < 180; ++i) { for (int j = 0; j < 512; ++j) { cudaMemcpy(bufp+512*j, ((float*)projData.ptr)+180*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost); } char fname[20]; sprintf(fname, "proj%03d.png", i); saveImage(fname, 512, 512, bufp); } #endif #if 0 for (unsigned int i = 0; i < 256*256; ++i) slice[i] = 0.0f; for (unsigned int i = 0; i < 256; ++i) { cudaExtent extentS; extentS.width = dims.iVolX*sizeof(float); extentS.height = dims.iVolY; extentS.depth = 1; cudaPos sp = { 0, 0, 0 }; cudaPos dp = { 0, 0, i }; cudaMemcpy3DParms p; p.srcArray = 0; p.srcPos = sp; p.srcPtr = ptr; p.dstArray = 0; p.dstPos = dp; p.dstPtr = volData; p.extent = extentS; p.kind = cudaMemcpyHostToDevice; cudaMemcpy3D(&p); } #endif astraCUDA3d::ConeBP(volData, projData, dims, angle, 1.0f); #if 0 float* buf = new float[256*256]; for (int i = 0; i < 256; ++i) { cudaMemcpy(buf, ((float*)volData.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost); printf("%d %d %d\n", volData.pitch, volData.xsize, volData.ysize); char fname[20]; sprintf(fname, "vol%03d.png", i); saveImage(fname, 256, 256, buf); } #endif } #endif