/*
-----------------------------------------------------------------------
Copyright: 2010-2018, imec Vision Lab, University of Antwerp
2014-2018, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
*/
#include "astra/cuda/3d/cgls3d.h"
#include "astra/cuda/3d/util3d.h"
#include "astra/cuda/3d/arith3d.h"
#include "astra/cuda/3d/cone_fp.h"
#include
#include
namespace astraCUDA3d {
CGLS::CGLS() : ReconAlgo3D()
{
D_maskData.ptr = 0;
D_smaskData.ptr = 0;
D_sinoData.ptr = 0;
D_volumeData.ptr = 0;
D_r.ptr = 0;
D_w.ptr = 0;
D_z.ptr = 0;
D_p.ptr = 0;
useVolumeMask = false;
useSinogramMask = false;
}
CGLS::~CGLS()
{
reset();
}
void CGLS::reset()
{
cudaFree(D_r.ptr);
cudaFree(D_w.ptr);
cudaFree(D_z.ptr);
cudaFree(D_p.ptr);
D_maskData.ptr = 0;
D_smaskData.ptr = 0;
D_sinoData.ptr = 0;
D_volumeData.ptr = 0;
D_r.ptr = 0;
D_w.ptr = 0;
D_z.ptr = 0;
D_p.ptr = 0;
useVolumeMask = false;
useSinogramMask = false;
sliceInitialized = false;
ReconAlgo3D::reset();
}
bool CGLS::enableVolumeMask()
{
useVolumeMask = true;
return true;
}
bool CGLS::enableSinogramMask()
{
useSinogramMask = true;
return true;
}
bool CGLS::init()
{
D_z = allocateVolumeData(dims);
D_p = allocateVolumeData(dims);
D_r = allocateProjectionData(dims);
D_w = allocateProjectionData(dims);
// TODO: check if allocations succeeded
return true;
}
bool CGLS::setVolumeMask(cudaPitchedPtr& _D_maskData)
{
assert(useVolumeMask);
D_maskData = _D_maskData;
return true;
}
bool CGLS::setSinogramMask(cudaPitchedPtr& _D_smaskData)
{
return false;
#if 0
// TODO: Implement this
assert(useSinogramMask);
D_smaskData = _D_smaskData;
return true;
#endif
}
bool CGLS::setBuffers(cudaPitchedPtr& _D_volumeData,
cudaPitchedPtr& _D_projData)
{
D_volumeData = _D_volumeData;
D_sinoData = _D_projData;
sliceInitialized = false;
return true;
}
bool CGLS::iterate(unsigned int iterations)
{
if (!sliceInitialized) {
// copy sinogram
duplicateProjectionData(D_r, D_sinoData, dims);
// r = sino - A*x
if (useVolumeMask) {
duplicateVolumeData(D_z, D_volumeData, dims);
processVol3D(D_z, D_maskData, dims);
callFP(D_z, D_r, -1.0f);
} else {
callFP(D_volumeData, D_r, -1.0f);
}
// p = A'*r
zeroVolumeData(D_p, dims);
callBP(D_p, D_r, 1.0f);
if (useVolumeMask)
processVol3D(D_p, D_maskData, dims);
gamma = dotProduct3D(D_p, dims.iVolX, dims.iVolY, dims.iVolZ);
sliceInitialized = true;
}
// iteration
for (unsigned int iter = 0; iter < iterations && !astra::shouldAbort(); ++iter) {
// w = A*p
zeroProjectionData(D_w, dims);
callFP(D_p, D_w, 1.0f);
// alpha = gamma /
float ww = dotProduct3D(D_w, dims.iProjU, dims.iProjAngles, dims.iProjV);
float alpha = gamma / ww;
// x += alpha*p
processVol3D(D_volumeData, D_p, alpha, dims);
// r -= alpha*w
processSino3D(D_r, D_w, -alpha, dims);
// z = A'*r
zeroVolumeData(D_z, dims);
callBP(D_z, D_r, 1.0f);
if (useVolumeMask)
processVol3D(D_z, D_maskData, dims);
float beta = 1.0f / gamma;
gamma = dotProduct3D(D_z, dims.iVolX, dims.iVolY, dims.iVolZ);
beta *= gamma;
// p = z + beta*p
processVol3D(D_p, D_z, beta, dims);
}
return true;
}
float CGLS::computeDiffNorm()
{
// We can use w and z as temporary storage here since they're not
// used outside of iterations.
// copy sinogram to w
duplicateProjectionData(D_w, D_sinoData, dims);
// do FP, subtracting projection from sinogram
if (useVolumeMask) {
duplicateVolumeData(D_z, D_volumeData, dims);
processVol3D(D_z, D_maskData, dims);
callFP(D_z, D_w, -1.0f);
} else {
callFP(D_volumeData, D_w, -1.0f);
}
float s = dotProduct3D(D_w, dims.iProjU, dims.iProjAngles, dims.iProjV);
return sqrt(s);
}
bool doCGLS(cudaPitchedPtr& D_volumeData,
cudaPitchedPtr& D_sinoData,
cudaPitchedPtr& D_maskData,
const SDimensions3D& dims, const SConeProjection* angles,
unsigned int iterations)
{
CGLS cgls;
bool ok = true;
ok &= cgls.setConeGeometry(dims, angles, SProjectorParams3D());
if (D_maskData.ptr)
ok &= cgls.enableVolumeMask();
if (!ok)
return false;
ok = cgls.init();
if (!ok)
return false;
if (D_maskData.ptr)
ok &= cgls.setVolumeMask(D_maskData);
ok &= cgls.setBuffers(D_volumeData, D_sinoData);
if (!ok)
return false;
ok = cgls.iterate(iterations);
return ok;
}
}