/* ----------------------------------------------------------------------- Copyright: 2010-2018, imec Vision Lab, University of Antwerp 2014-2018, CWI, Amsterdam Contact: astra@astra-toolbox.com Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- */ #include "astra/cuda/3d/cgls3d.h" #include "astra/cuda/3d/util3d.h" #include "astra/cuda/3d/arith3d.h" #include "astra/cuda/3d/cone_fp.h" #include #include namespace astraCUDA3d { CGLS::CGLS() : ReconAlgo3D() { D_maskData.ptr = 0; D_smaskData.ptr = 0; D_sinoData.ptr = 0; D_volumeData.ptr = 0; D_r.ptr = 0; D_w.ptr = 0; D_z.ptr = 0; D_p.ptr = 0; useVolumeMask = false; useSinogramMask = false; } CGLS::~CGLS() { reset(); } void CGLS::reset() { cudaFree(D_r.ptr); cudaFree(D_w.ptr); cudaFree(D_z.ptr); cudaFree(D_p.ptr); D_maskData.ptr = 0; D_smaskData.ptr = 0; D_sinoData.ptr = 0; D_volumeData.ptr = 0; D_r.ptr = 0; D_w.ptr = 0; D_z.ptr = 0; D_p.ptr = 0; useVolumeMask = false; useSinogramMask = false; sliceInitialized = false; ReconAlgo3D::reset(); } bool CGLS::enableVolumeMask() { useVolumeMask = true; return true; } bool CGLS::enableSinogramMask() { useSinogramMask = true; return true; } bool CGLS::init() { D_z = allocateVolumeData(dims); D_p = allocateVolumeData(dims); D_r = allocateProjectionData(dims); D_w = allocateProjectionData(dims); // TODO: check if allocations succeeded return true; } bool CGLS::setVolumeMask(cudaPitchedPtr& _D_maskData) { assert(useVolumeMask); D_maskData = _D_maskData; return true; } bool CGLS::setSinogramMask(cudaPitchedPtr& _D_smaskData) { return false; #if 0 // TODO: Implement this assert(useSinogramMask); D_smaskData = _D_smaskData; return true; #endif } bool CGLS::setBuffers(cudaPitchedPtr& _D_volumeData, cudaPitchedPtr& _D_projData) { D_volumeData = _D_volumeData; D_sinoData = _D_projData; sliceInitialized = false; return true; } bool CGLS::iterate(unsigned int iterations) { if (!sliceInitialized) { // copy sinogram duplicateProjectionData(D_r, D_sinoData, dims); // r = sino - A*x if (useVolumeMask) { duplicateVolumeData(D_z, D_volumeData, dims); processVol3D(D_z, D_maskData, dims); callFP(D_z, D_r, -1.0f); } else { callFP(D_volumeData, D_r, -1.0f); } // p = A'*r zeroVolumeData(D_p, dims); callBP(D_p, D_r, 1.0f); if (useVolumeMask) processVol3D(D_p, D_maskData, dims); gamma = dotProduct3D(D_p, dims.iVolX, dims.iVolY, dims.iVolZ); sliceInitialized = true; } // iteration for (unsigned int iter = 0; iter < iterations && !astra::shouldAbort(); ++iter) { // w = A*p zeroProjectionData(D_w, dims); callFP(D_p, D_w, 1.0f); // alpha = gamma / float ww = dotProduct3D(D_w, dims.iProjU, dims.iProjAngles, dims.iProjV); float alpha = gamma / ww; // x += alpha*p processVol3D(D_volumeData, D_p, alpha, dims); // r -= alpha*w processSino3D(D_r, D_w, -alpha, dims); // z = A'*r zeroVolumeData(D_z, dims); callBP(D_z, D_r, 1.0f); if (useVolumeMask) processVol3D(D_z, D_maskData, dims); float beta = 1.0f / gamma; gamma = dotProduct3D(D_z, dims.iVolX, dims.iVolY, dims.iVolZ); beta *= gamma; // p = z + beta*p processVol3D(D_p, D_z, beta, dims); } return true; } float CGLS::computeDiffNorm() { // We can use w and z as temporary storage here since they're not // used outside of iterations. // copy sinogram to w duplicateProjectionData(D_w, D_sinoData, dims); // do FP, subtracting projection from sinogram if (useVolumeMask) { duplicateVolumeData(D_z, D_volumeData, dims); processVol3D(D_z, D_maskData, dims); callFP(D_z, D_w, -1.0f); } else { callFP(D_volumeData, D_w, -1.0f); } float s = dotProduct3D(D_w, dims.iProjU, dims.iProjAngles, dims.iProjV); return sqrt(s); } bool doCGLS(cudaPitchedPtr& D_volumeData, cudaPitchedPtr& D_sinoData, cudaPitchedPtr& D_maskData, const SDimensions3D& dims, const SConeProjection* angles, unsigned int iterations) { CGLS cgls; bool ok = true; ok &= cgls.setConeGeometry(dims, angles, SProjectorParams3D()); if (D_maskData.ptr) ok &= cgls.enableVolumeMask(); if (!ok) return false; ok = cgls.init(); if (!ok) return false; if (D_maskData.ptr) ok &= cgls.setVolumeMask(D_maskData); ok &= cgls.setBuffers(D_volumeData, D_sinoData); if (!ok) return false; ok = cgls.iterate(iterations); return ok; } }