/* ----------------------------------------------------------------------- Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp 2014-2016, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. ----------------------------------------------------------------------- */ #include <cstdio> #include <cassert> #include "sirt.h" #include "util.h" #include "arith.h" #ifdef STANDALONE #include "testutil.h" #endif namespace astraCUDA { SIRT::SIRT() : ReconAlgo() { D_projData = 0; D_tmpData = 0; D_lineWeight = 0; D_pixelWeight = 0; D_minMaskData = 0; D_maxMaskData = 0; fRelaxation = 1.0f; freeMinMaxMasks = false; } SIRT::~SIRT() { reset(); } void SIRT::reset() { cudaFree(D_projData); cudaFree(D_tmpData); cudaFree(D_lineWeight); cudaFree(D_pixelWeight); if (freeMinMaxMasks) { cudaFree(D_minMaskData); cudaFree(D_maxMaskData); } D_projData = 0; D_tmpData = 0; D_lineWeight = 0; D_pixelWeight = 0; freeMinMaxMasks = false; D_minMaskData = 0; D_maxMaskData = 0; useVolumeMask = false; useSinogramMask = false; fRelaxation = 1.0f; ReconAlgo::reset(); } bool SIRT::init() { allocateVolumeData(D_pixelWeight, pixelPitch, dims); zeroVolumeData(D_pixelWeight, pixelPitch, dims); allocateVolumeData(D_tmpData, tmpPitch, dims); zeroVolumeData(D_tmpData, tmpPitch, dims); allocateProjectionData(D_projData, projPitch, dims); zeroProjectionData(D_projData, projPitch, dims); allocateProjectionData(D_lineWeight, linePitch, dims); zeroProjectionData(D_lineWeight, linePitch, dims); // We can't precompute lineWeights and pixelWeights when using a mask if (!useVolumeMask && !useSinogramMask) precomputeWeights(); // TODO: check if allocations succeeded return true; } bool SIRT::precomputeWeights() { zeroProjectionData(D_lineWeight, linePitch, dims); if (useVolumeMask) { callFP(D_maskData, maskPitch, D_lineWeight, linePitch, 1.0f); } else { processVol<opSet>(D_tmpData, 1.0f, tmpPitch, dims); callFP(D_tmpData, tmpPitch, D_lineWeight, linePitch, 1.0f); } processSino<opInvert>(D_lineWeight, linePitch, dims); if (useSinogramMask) { // scale line weights with sinogram mask to zero out masked sinogram pixels processSino<opMul>(D_lineWeight, D_smaskData, linePitch, dims); } zeroVolumeData(D_pixelWeight, pixelPitch, dims); if (useSinogramMask) { callBP(D_pixelWeight, pixelPitch, D_smaskData, smaskPitch, 1.0f); } else { processSino<opSet>(D_projData, 1.0f, projPitch, dims); callBP(D_pixelWeight, pixelPitch, D_projData, projPitch, 1.0f); } processVol<opInvert>(D_pixelWeight, pixelPitch, dims); if (useVolumeMask) { // scale pixel weights with mask to zero out masked pixels processVol<opMul>(D_pixelWeight, D_maskData, pixelPitch, dims); } // Also fold the relaxation factor into pixel weights processVol<opMul>(D_pixelWeight, fRelaxation, pixelPitch, dims); return true; } bool SIRT::doSlabCorrections() { // This function compensates for effectively infinitely large slab-like // objects of finite thickness 1. // Each ray through the object has an intersection of length d/cos(alpha). // The length of the ray actually intersecting the reconstruction volume is // given by D_lineWeight. By dividing by 1/cos(alpha) and multiplying by the // lineweights, we correct for this missing attenuation outside of the // reconstruction volume, assuming the object is homogeneous. // This effectively scales the output values by assuming the thickness d // is 1 unit. // This function in its current implementation only works if there are no masks. // In this case, init() will also have already called precomputeWeights(), // so we can use D_lineWeight. if (useVolumeMask || useSinogramMask) return false; // multiply by line weights processSino<opDiv>(D_sinoData, D_lineWeight, projPitch, dims); SDimensions subdims = dims; subdims.iProjAngles = 1; // divide by 1/cos(angle) // ...but limit the correction to -80/+80 degrees. float bound = cosf(1.3963f); float* t = (float*)D_sinoData; for (int i = 0; i < dims.iProjAngles; ++i) { float f = fabs(cosf(angles[i])); if (f < bound) f = bound; processSino<opMul>(t, f, sinoPitch, subdims); t += sinoPitch; } return true; } bool SIRT::setMinMaxMasks(float* D_minMaskData_, float* D_maxMaskData_, unsigned int iPitch) { D_minMaskData = D_minMaskData_; D_maxMaskData = D_maxMaskData_; minMaskPitch = iPitch; maxMaskPitch = iPitch; freeMinMaxMasks = false; return true; } bool SIRT::uploadMinMaxMasks(const float* pfMinMaskData, const float* pfMaxMaskData, unsigned int iPitch) { freeMinMaxMasks = true; bool ok = true; if (pfMinMaskData) { allocateVolumeData(D_minMaskData, minMaskPitch, dims); ok = copyVolumeToDevice(pfMinMaskData, iPitch, dims, D_minMaskData, minMaskPitch); } if (!ok) return false; if (pfMaxMaskData) { allocateVolumeData(D_maxMaskData, maxMaskPitch, dims); ok = copyVolumeToDevice(pfMaxMaskData, iPitch, dims, D_maxMaskData, maxMaskPitch); } if (!ok) return false; return true; } bool SIRT::iterate(unsigned int iterations) { shouldAbort = false; if (useVolumeMask || useSinogramMask) precomputeWeights(); // iteration for (unsigned int iter = 0; iter < iterations && !shouldAbort; ++iter) { // copy sinogram to projection data duplicateProjectionData(D_projData, D_sinoData, projPitch, dims); // do FP, subtracting projection from sinogram if (useVolumeMask) { duplicateVolumeData(D_tmpData, D_volumeData, volumePitch, dims); processVol<opMul>(D_tmpData, D_maskData, tmpPitch, dims); callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f); } else { callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f); } processSino<opMul>(D_projData, D_lineWeight, projPitch, dims); zeroVolumeData(D_tmpData, tmpPitch, dims); callBP(D_tmpData, tmpPitch, D_projData, projPitch, 1.0f); // pixel weights also contain the volume mask and relaxation factor processVol<opAddMul>(D_volumeData, D_pixelWeight, D_tmpData, volumePitch, dims); if (useMinConstraint) processVol<opClampMin>(D_volumeData, fMinConstraint, volumePitch, dims); if (useMaxConstraint) processVol<opClampMax>(D_volumeData, fMaxConstraint, volumePitch, dims); if (D_minMaskData) processVol<opClampMinMask>(D_volumeData, D_minMaskData, volumePitch, dims); if (D_maxMaskData) processVol<opClampMaxMask>(D_volumeData, D_maxMaskData, volumePitch, dims); } return true; } float SIRT::computeDiffNorm() { // copy sinogram to projection data duplicateProjectionData(D_projData, D_sinoData, projPitch, dims); // do FP, subtracting projection from sinogram if (useVolumeMask) { duplicateVolumeData(D_tmpData, D_volumeData, volumePitch, dims); processVol<opMul>(D_tmpData, D_maskData, tmpPitch, dims); callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f); } else { callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f); } // compute norm of D_projData float s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles); return sqrt(s); } bool doSIRT(float* D_volumeData, unsigned int volumePitch, float* D_sinoData, unsigned int sinoPitch, float* D_maskData, unsigned int maskPitch, const SDimensions& dims, const float* angles, const float* TOffsets, unsigned int iterations) { SIRT sirt; bool ok = true; ok &= sirt.setGeometry(dims, angles); if (D_maskData) ok &= sirt.enableVolumeMask(); if (TOffsets) ok &= sirt.setTOffsets(TOffsets); if (!ok) return false; ok = sirt.init(); if (!ok) return false; if (D_maskData) ok &= sirt.setVolumeMask(D_maskData, maskPitch); ok &= sirt.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch); if (!ok) return false; ok = sirt.iterate(iterations); return ok; } } #ifdef STANDALONE using namespace astraCUDA; int main() { float* D_volumeData; float* D_sinoData; SDimensions dims; dims.iVolWidth = 1024; dims.iVolHeight = 1024; dims.iProjAngles = 512; dims.iProjDets = 1536; dims.fDetScale = 1.0f; dims.iRaysPerDet = 1; unsigned int volumePitch, sinoPitch; allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch); zeroVolume(D_volumeData, volumePitch, dims.iVolWidth, dims.iVolHeight); printf("pitch: %u\n", volumePitch); allocateVolume(D_sinoData, dims.iProjDets, dims.iProjAngles, sinoPitch); zeroVolume(D_sinoData, sinoPitch, dims.iProjDets, dims.iProjAngles); printf("pitch: %u\n", sinoPitch); unsigned int y, x; float* sino = loadImage("sino.png", y, x); float* img = new float[dims.iVolWidth*dims.iVolHeight]; copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_sinoData, sinoPitch); float* angle = new float[dims.iProjAngles]; for (unsigned int i = 0; i < dims.iProjAngles; ++i) angle[i] = i*(M_PI/dims.iProjAngles); SIRT sirt; sirt.setGeometry(dims, angle); sirt.init(); sirt.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch); sirt.iterate(25); delete[] angle; copyVolumeFromDevice(img, dims.iVolWidth, dims, D_volumeData, volumePitch); saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img); return 0; } #endif