/* ----------------------------------------------------------------------- Copyright: 2010-2021, imec Vision Lab, University of Antwerp 2014-2021, CWI, Amsterdam Contact: astra@astra-toolbox.com Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- */ #include "astra/cuda/2d/util.h" #include "astra/cuda/2d/arith.h" #include #include #include #include namespace astraCUDA { static const unsigned g_MaxAngles = 2560; __constant__ float gC_SrcX[g_MaxAngles]; __constant__ float gC_SrcY[g_MaxAngles]; __constant__ float gC_DetSX[g_MaxAngles]; __constant__ float gC_DetSY[g_MaxAngles]; __constant__ float gC_DetUX[g_MaxAngles]; __constant__ float gC_DetUY[g_MaxAngles]; // optimization parameters static const unsigned int g_anglesPerBlock = 16; static const unsigned int g_detBlockSize = 32; static const unsigned int g_blockSlices = 64; static bool bindVolumeDataTexture(float* data, cudaArray*& dataArray, cudaTextureObject_t& texObj, unsigned int pitch, unsigned int width, unsigned int height) { // TODO: For very small sizes (roughly <=512x128) with few angles (<=180) // not using an array is more efficient. cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat); dataArray = 0; cudaMallocArray(&dataArray, &channelDesc, width, height); cudaMemcpy2DToArray(dataArray, 0, 0, data, pitch*sizeof(float), width*sizeof(float), height, cudaMemcpyDeviceToDevice); cudaResourceDesc resDesc; memset(&resDesc, 0, sizeof(resDesc)); resDesc.resType = cudaResourceTypeArray; resDesc.res.array.array = dataArray; cudaTextureDesc texDesc; memset(&texDesc, 0, sizeof(texDesc)); texDesc.addressMode[0] = cudaAddressModeBorder; texDesc.addressMode[1] = cudaAddressModeBorder; texDesc.filterMode = cudaFilterModeLinear; texDesc.readMode = cudaReadModeElementType; texDesc.normalizedCoords = 0; texObj = 0; return checkCuda(cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL), "fan_fp texture"); } // projection for angles that are roughly horizontal // (detector roughly vertical) __global__ void FanFPhorizontal(float* D_projData, unsigned int projPitch, cudaTextureObject_t tex, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions dims, float outputScale) { float* projData = (float*)D_projData; const int relDet = threadIdx.x; const int relAngle = threadIdx.y; const int angle = startAngle + blockIdx.x * g_anglesPerBlock + relAngle; if (angle >= endAngle) return; const int detector = blockIdx.y * g_detBlockSize + relDet; if (detector < 0 || detector >= dims.iProjDets) return; const float fSrcX = gC_SrcX[angle]; const float fSrcY = gC_SrcY[angle]; const float fDetSX = gC_DetSX[angle]; const float fDetSY = gC_DetSY[angle]; const float fDetUX = gC_DetUX[angle]; const float fDetUY = gC_DetUY[angle]; float fVal = 0.0f; const float fdx = fabsf(fDetSX + detector*fDetUX + 0.5f - fSrcX); const float fdy = fabsf(fDetSY + detector*fDetUY + 0.5f - fSrcY); if (fdy > fdx) return; for (int iSubT = 0; iSubT < dims.iRaysPerDet; ++iSubT) { const float fDet = detector + (0.5f + iSubT) / dims.iRaysPerDet; const float fDetX = fDetSX + fDet * fDetUX; const float fDetY = fDetSY + fDet * fDetUY; // ray: y = alpha * x + beta const float alpha = (fSrcY - fDetY) / (fSrcX - fDetX); const float beta = fSrcY - alpha * fSrcX; const float fDistCorr = sqrt(alpha*alpha+1.0f) * outputScale / dims.iRaysPerDet; // intersect ray with first slice float fY = -alpha * (startSlice - 0.5f*dims.iVolWidth + 0.5f) - beta + 0.5f*dims.iVolHeight - 0.5f + 0.5f; float fX = startSlice + 0.5f; int endSlice = startSlice + g_blockSlices; if (endSlice > dims.iVolWidth) endSlice = dims.iVolWidth; float fV = 0.0f; for (int slice = startSlice; slice < endSlice; ++slice) { fV += tex2D(tex, fX, fY); fY -= alpha; fX += 1.0f; } fVal += fV * fDistCorr; } projData[angle*projPitch+detector] += fVal; } // projection for angles that are roughly vertical // (detector roughly horizontal) __global__ void FanFPvertical(float* D_projData, unsigned int projPitch, cudaTextureObject_t tex, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions dims, float outputScale) { const int relDet = threadIdx.x; const int relAngle = threadIdx.y; const int angle = startAngle + blockIdx.x * g_anglesPerBlock + relAngle; if (angle >= endAngle) return; const int detector = blockIdx.y * g_detBlockSize + relDet; if (detector < 0 || detector >= dims.iProjDets) return; float* projData = (float*)D_projData; const float fSrcX = gC_SrcX[angle]; const float fSrcY = gC_SrcY[angle]; const float fDetSX = gC_DetSX[angle]; const float fDetSY = gC_DetSY[angle]; const float fDetUX = gC_DetUX[angle]; const float fDetUY = gC_DetUY[angle]; float fVal = 0.0f; const float fdx = fabsf(fDetSX + detector*fDetUX + 0.5f - fSrcX); const float fdy = fabsf(fDetSY + detector*fDetUY + 0.5f - fSrcY); if (fdy <= fdx) return; for (int iSubT = 0; iSubT < dims.iRaysPerDet; ++iSubT) { const float fDet = detector + (0.5f + iSubT) / dims.iRaysPerDet /*- gC_angle_offset[angle]*/; const float fDetX = fDetSX + fDet * fDetUX; const float fDetY = fDetSY + fDet * fDetUY; // ray: x = alpha * y + beta const float alpha = (fSrcX - fDetX) / (fSrcY - fDetY); const float beta = fSrcX - alpha * fSrcY; const float fDistCorr = sqrt(alpha*alpha+1) * outputScale / dims.iRaysPerDet; // intersect ray with first slice float fX = -alpha * (startSlice - 0.5f*dims.iVolHeight + 0.5f) + beta + 0.5f*dims.iVolWidth - 0.5f + 0.5f; float fY = startSlice + 0.5f; int endSlice = startSlice + g_blockSlices; if (endSlice > dims.iVolHeight) endSlice = dims.iVolHeight; float fV = 0.0f; for (int slice = startSlice; slice < endSlice; ++slice) { fV += tex2D(tex, fX, fY); fX -= alpha; fY += 1.0f; } fVal += fV * fDistCorr; } projData[angle*projPitch+detector] += fVal; } bool FanFP_internal(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, const SDimensions& dims, const SFanProjection* angles, float outputScale) { assert(dims.iProjAngles <= g_MaxAngles); cudaArray* D_dataArray; cudaTextureObject_t D_texObj; bindVolumeDataTexture(D_volumeData, D_dataArray, D_texObj, volumePitch, dims.iVolWidth, dims.iVolHeight); // transfer angles to constant memory float* tmp = new float[dims.iProjAngles]; #define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0) TRANSFER_TO_CONSTANT(SrcX); TRANSFER_TO_CONSTANT(SrcY); TRANSFER_TO_CONSTANT(DetSX); TRANSFER_TO_CONSTANT(DetSY); TRANSFER_TO_CONSTANT(DetUX); TRANSFER_TO_CONSTANT(DetUY); #undef TRANSFER_TO_CONSTANT delete[] tmp; dim3 dimBlock(g_detBlockSize, g_anglesPerBlock); // region size, angles const unsigned int g_blockSliceSize = g_detBlockSize; std::list streams; unsigned int blockStart = 0; unsigned int blockEnd = dims.iProjAngles; dim3 dimGrid((blockEnd-blockStart+g_anglesPerBlock-1)/g_anglesPerBlock, (dims.iProjDets+g_blockSliceSize-1)/g_blockSliceSize); // angle blocks, regions cudaStream_t stream1; cudaStreamCreate(&stream1); streams.push_back(stream1); for (unsigned int i = 0; i < dims.iVolWidth; i += g_blockSlices) FanFPhorizontal<<>>(D_projData, projPitch, D_texObj, i, blockStart, blockEnd, dims, outputScale); cudaStream_t stream2; cudaStreamCreate(&stream2); streams.push_back(stream2); for (unsigned int i = 0; i < dims.iVolHeight; i += g_blockSlices) FanFPvertical<<>>(D_projData, projPitch, D_texObj, i, blockStart, blockEnd, dims, outputScale); bool ok = true; ok &= checkCuda(cudaStreamSynchronize(stream1), "fan_fp hor"); cudaStreamDestroy(stream1); ok &= checkCuda(cudaStreamSynchronize(stream2), "fan_fp ver"); cudaStreamDestroy(stream2); cudaFreeArray(D_dataArray); cudaDestroyTextureObject(D_texObj); return ok; } bool FanFP(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, const SDimensions& dims, const SFanProjection* angles, float outputScale) { for (unsigned int iAngle = 0; iAngle < dims.iProjAngles; iAngle += g_MaxAngles) { SDimensions subdims = dims; unsigned int iEndAngle = iAngle + g_MaxAngles; if (iEndAngle >= dims.iProjAngles) iEndAngle = dims.iProjAngles; subdims.iProjAngles = iEndAngle - iAngle; bool ret; ret = FanFP_internal(D_volumeData, volumePitch, D_projData + iAngle * projPitch, projPitch, subdims, angles + iAngle, outputScale); if (!ret) return false; } return true; } }