/* ----------------------------------------------------------------------- Copyright 2012 iMinds-Vision Lab, University of Antwerp Contact: astra@ua.ac.be Website: http://astra.ua.ac.be This file is part of the All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- $Id$ */ #include #include #include "em.h" #include "util.h" #include "arith.h" #ifdef STANDALONE #include "testutil.h" #endif namespace astraCUDA { // TODO: ensure non-negativity somewhere?? EM::EM() { D_projData = 0; D_tmpData = 0; D_pixelWeight = 0; } EM::~EM() { reset(); } void EM::reset() { cudaFree(D_projData); cudaFree(D_tmpData); cudaFree(D_pixelWeight); D_projData = 0; D_tmpData = 0; D_pixelWeight = 0; ReconAlgo::reset(); } bool EM::init() { allocateVolumeData(D_pixelWeight, pixelPitch, dims); zeroVolumeData(D_pixelWeight, pixelPitch, dims); allocateVolumeData(D_tmpData, tmpPitch, dims); zeroVolumeData(D_tmpData, tmpPitch, dims); allocateProjectionData(D_projData, projPitch, dims); zeroProjectionData(D_projData, projPitch, dims); // We can't precompute pixelWeights when using a volume mask #if 0 if (!useVolumeMask) #endif precomputeWeights(); // TODO: check if allocations succeeded return true; } bool EM::precomputeWeights() { zeroVolumeData(D_pixelWeight, pixelPitch, dims); #if 0 if (useSinogramMask) { callBP(D_pixelWeight, pixelPitch, D_smaskData, smaskPitch); } else #endif { processVol(D_projData, 1.0f, projPitch, dims.iProjDets, dims.iProjAngles); callBP(D_pixelWeight, pixelPitch, D_projData, projPitch); } processVol(D_pixelWeight, pixelPitch, dims.iVolWidth, dims.iVolHeight); #if 0 if (useVolumeMask) { // scale pixel weights with mask to zero out masked pixels processVol(D_pixelWeight, D_maskData, pixelPitch, dims.iVolWidth, dims.iVolHeight); } #endif return true; } bool EM::iterate(unsigned int iterations) { shouldAbort = false; #if 0 if (useVolumeMask) precomputeWeights(); #endif // iteration for (unsigned int iter = 0; iter < iterations && !shouldAbort; ++iter) { // Do FP of volumeData zeroProjectionData(D_projData, projPitch, dims); callFP(D_volumeData, volumePitch, D_projData, projPitch, 1.0f); // Divide sinogram by FP (into projData) processVol(D_projData, D_sinoData, projPitch, dims.iProjDets, dims.iProjAngles); // Do BP of projData into tmpData zeroVolumeData(D_tmpData, tmpPitch, dims); callBP(D_tmpData, tmpPitch, D_projData, projPitch); // Multiply volumeData with tmpData divided by pixel weights processVol(D_volumeData, D_tmpData, D_pixelWeight, pixelPitch, dims.iVolWidth, dims.iVolHeight); } return true; } float EM::computeDiffNorm() { // copy sinogram to projection data cudaMemcpy2D(D_projData, sizeof(float)*projPitch, D_sinoData, sizeof(float)*sinoPitch, sizeof(float)*(dims.iProjDets), dims.iProjAngles, cudaMemcpyDeviceToDevice); // do FP, subtracting projection from sinogram if (useVolumeMask) { cudaMemcpy2D(D_tmpData, sizeof(float)*tmpPitch, D_volumeData, sizeof(float)*volumePitch, sizeof(float)*(dims.iVolWidth), dims.iVolHeight, cudaMemcpyDeviceToDevice); processVol(D_tmpData, D_maskData, tmpPitch, dims.iVolWidth, dims.iVolHeight); callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f); } else { callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f); } // compute norm of D_projData float s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles); return sqrt(s); } bool doEM(float* D_volumeData, unsigned int volumePitch, float* D_sinoData, unsigned int sinoPitch, const SDimensions& dims, const float* angles, const float* TOffsets, unsigned int iterations) { EM em; bool ok = true; ok &= em.setGeometry(dims, angles); if (TOffsets) ok &= em.setTOffsets(TOffsets); if (!ok) return false; ok = em.init(); if (!ok) return false; ok &= em.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch); if (!ok) return false; ok = em.iterate(iterations); return ok; } } #ifdef STANDALONE using namespace astraCUDA; int main() { float* D_volumeData; float* D_sinoData; SDimensions dims; dims.iVolWidth = 1024; dims.iVolHeight = 1024; dims.iProjAngles = 512; dims.iProjDets = 1536; dims.fDetScale = 1.0f; dims.iRaysPerDet = 1; unsigned int volumePitch, sinoPitch; allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch); zeroVolume(D_volumeData, volumePitch, dims.iVolWidth, dims.iVolHeight); printf("pitch: %u\n", volumePitch); allocateVolume(D_sinoData, dims.iProjDets, dims.iProjAngles, sinoPitch); zeroVolume(D_sinoData, sinoPitch, dims.iProjDets, dims.iProjAngles); printf("pitch: %u\n", sinoPitch); unsigned int y, x; float* sino = loadImage("sino.png", y, x); float* img = new float[dims.iVolWidth*dims.iVolHeight]; copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_sinoData, sinoPitch); float* angle = new float[dims.iProjAngles]; for (unsigned int i = 0; i < dims.iProjAngles; ++i) angle[i] = i*(M_PI/dims.iProjAngles); EM em; em.setGeometry(dims, angle); em.init(); // TODO: Initialize D_volumeData with an unfiltered backprojection em.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch); em.iterate(25); delete[] angle; copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch); saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img); return 0; } #endif