/*
-----------------------------------------------------------------------
Copyright 2012 iMinds-Vision Lab, University of Antwerp
Contact: astra@ua.ac.be
Website: http://astra.ua.ac.be
This file is part of the
All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
$Id$
*/
#include
#include
#include "em.h"
#include "util.h"
#include "arith.h"
#ifdef STANDALONE
#include "testutil.h"
#endif
namespace astraCUDA {
// TODO: ensure non-negativity somewhere??
EM::EM()
{
D_projData = 0;
D_tmpData = 0;
D_pixelWeight = 0;
}
EM::~EM()
{
reset();
}
void EM::reset()
{
cudaFree(D_projData);
cudaFree(D_tmpData);
cudaFree(D_pixelWeight);
D_projData = 0;
D_tmpData = 0;
D_pixelWeight = 0;
ReconAlgo::reset();
}
bool EM::init()
{
allocateVolumeData(D_pixelWeight, pixelPitch, dims);
zeroVolumeData(D_pixelWeight, pixelPitch, dims);
allocateVolumeData(D_tmpData, tmpPitch, dims);
zeroVolumeData(D_tmpData, tmpPitch, dims);
allocateProjectionData(D_projData, projPitch, dims);
zeroProjectionData(D_projData, projPitch, dims);
// We can't precompute pixelWeights when using a volume mask
#if 0
if (!useVolumeMask)
#endif
precomputeWeights();
// TODO: check if allocations succeeded
return true;
}
bool EM::precomputeWeights()
{
zeroVolumeData(D_pixelWeight, pixelPitch, dims);
#if 0
if (useSinogramMask) {
callBP(D_pixelWeight, pixelPitch, D_smaskData, smaskPitch);
} else
#endif
{
processVol(D_projData, 1.0f, projPitch, dims.iProjDets, dims.iProjAngles);
callBP(D_pixelWeight, pixelPitch, D_projData, projPitch);
}
processVol(D_pixelWeight, pixelPitch, dims.iVolWidth, dims.iVolHeight);
#if 0
if (useVolumeMask) {
// scale pixel weights with mask to zero out masked pixels
processVol(D_pixelWeight, D_maskData, pixelPitch, dims.iVolWidth, dims.iVolHeight);
}
#endif
return true;
}
bool EM::iterate(unsigned int iterations)
{
shouldAbort = false;
#if 0
if (useVolumeMask)
precomputeWeights();
#endif
// iteration
for (unsigned int iter = 0; iter < iterations && !shouldAbort; ++iter) {
// Do FP of volumeData
zeroProjectionData(D_projData, projPitch, dims);
callFP(D_volumeData, volumePitch, D_projData, projPitch, 1.0f);
// Divide sinogram by FP (into projData)
processVol(D_projData, D_sinoData, projPitch, dims.iProjDets, dims.iProjAngles);
// Do BP of projData into tmpData
zeroVolumeData(D_tmpData, tmpPitch, dims);
callBP(D_tmpData, tmpPitch, D_projData, projPitch);
// Multiply volumeData with tmpData divided by pixel weights
processVol(D_volumeData, D_tmpData, D_pixelWeight, pixelPitch, dims.iVolWidth, dims.iVolHeight);
}
return true;
}
float EM::computeDiffNorm()
{
// copy sinogram to projection data
cudaMemcpy2D(D_projData, sizeof(float)*projPitch, D_sinoData, sizeof(float)*sinoPitch, sizeof(float)*(dims.iProjDets), dims.iProjAngles, cudaMemcpyDeviceToDevice);
// do FP, subtracting projection from sinogram
if (useVolumeMask) {
cudaMemcpy2D(D_tmpData, sizeof(float)*tmpPitch, D_volumeData, sizeof(float)*volumePitch, sizeof(float)*(dims.iVolWidth), dims.iVolHeight, cudaMemcpyDeviceToDevice);
processVol(D_tmpData, D_maskData, tmpPitch, dims.iVolWidth, dims.iVolHeight);
callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f);
} else {
callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f);
}
// compute norm of D_projData
float s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
return sqrt(s);
}
bool doEM(float* D_volumeData, unsigned int volumePitch,
float* D_sinoData, unsigned int sinoPitch,
const SDimensions& dims, const float* angles,
const float* TOffsets, unsigned int iterations)
{
EM em;
bool ok = true;
ok &= em.setGeometry(dims, angles);
if (TOffsets)
ok &= em.setTOffsets(TOffsets);
if (!ok)
return false;
ok = em.init();
if (!ok)
return false;
ok &= em.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch);
if (!ok)
return false;
ok = em.iterate(iterations);
return ok;
}
}
#ifdef STANDALONE
using namespace astraCUDA;
int main()
{
float* D_volumeData;
float* D_sinoData;
SDimensions dims;
dims.iVolWidth = 1024;
dims.iVolHeight = 1024;
dims.iProjAngles = 512;
dims.iProjDets = 1536;
dims.fDetScale = 1.0f;
dims.iRaysPerDet = 1;
unsigned int volumePitch, sinoPitch;
allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
zeroVolume(D_volumeData, volumePitch, dims.iVolWidth, dims.iVolHeight);
printf("pitch: %u\n", volumePitch);
allocateVolume(D_sinoData, dims.iProjDets, dims.iProjAngles, sinoPitch);
zeroVolume(D_sinoData, sinoPitch, dims.iProjDets, dims.iProjAngles);
printf("pitch: %u\n", sinoPitch);
unsigned int y, x;
float* sino = loadImage("sino.png", y, x);
float* img = new float[dims.iVolWidth*dims.iVolHeight];
copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_sinoData, sinoPitch);
float* angle = new float[dims.iProjAngles];
for (unsigned int i = 0; i < dims.iProjAngles; ++i)
angle[i] = i*(M_PI/dims.iProjAngles);
EM em;
em.setGeometry(dims, angle);
em.init();
// TODO: Initialize D_volumeData with an unfiltered backprojection
em.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch);
em.iterate(25);
delete[] angle;
copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img);
return 0;
}
#endif