diff options
Diffstat (limited to 'pcilib/lock.h')
-rw-r--r-- | pcilib/lock.h | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/pcilib/lock.h b/pcilib/lock.h index f1a5abf..e3a5b02 100644 --- a/pcilib/lock.h +++ b/pcilib/lock.h @@ -1,11 +1,11 @@ /** * @file lock.h * @brief this file is the header file for the functions that implement a semaphore API for the pcitool program, using pthread robust mutexes. - * @details the use of pthread robust mutexes was chosen due to the fact we privilege security over fastness, and that pthread mutexes permits to recover semaphores even with crash ,and that it does not require access to resources that can be easily accessible from extern usage as flock file locking mechanism. A possible other locking mechanism could be the sysv semaphores, but we have a problem of how determine a perfect hash for the init function, and more, benchmarks proves that sysv semaphore aren't that stable. For pure locking/unlocking, pthread is better in performance than sysV, but it suffers from big initialization times. In this sense, a kernel memory space is used for saving the locks, and persistence permits to avoid initializations over uses. + * @details the use of pthread robust mutexes was chosen due to the fact we privilege security over fastness, and that pthread mutexes permits to recover semaphores even with crash ,and that it does not require access to resources that can be easily accessible from extern usage as flock file locking mechanism. A possible other locking mechanism could be the sysv semaphores, but we have a problem of how determine a perfect hash for the init function, and more, benchmarks proves that sysv semaphore aren't that stable. For pure locking/unlocking, pthread is better in performance than sysV, but it suffers from big initialization times. In this sense, a kernel memory space is used for saving the locks, and persistence permits to avoid initializations over uses. * - * We considered that mutex implmentation is enough compared to a reader/writer implementation. If it should change, please go to sysv semaphore. + * We considered that mutex implmentation is enough compared to a reader/writer implementation. If it should change, please go to sysv semaphore. * - * Basic explanation on how semaphores here work: a semaphore here is a positive integer, thus that can't go below zero, which is initiated with a value. when a process want access to the critical resource, it asks to decrement the value of the semaphore, and when it has finished, it reincrements it.basically, when the semaphore is equal to zero, any process must have to wait for it to be reincremented before decrementing it again. Here are defined two types of access to the semaphore corresponding to the reader/writer problem : an exclusive lock, which means that no other process than the one who have the resource can access it; a shared lock, which means that other processes who want to access to the resource with a shared lock can have the access, but a concurrent process who want to access the semaphore with an exclusive lock won't be able to. + * Basic explanation on how semaphores here work: a semaphore here is a positive integer, thus that can't go below zero, which is initiated with a value. when a process want access to the critical resource, it asks to decrement the value of the semaphore, and when it has finished, it reincrements it.basically, when the semaphore is equal to zero, any process must have to wait for it to be reincremented before decrementing it again. Here are defined two types of access to the semaphore corresponding to the reader/writer problem : an exclusive lock, which means that no other process than the one who have the resource can access it; a shared lock, which means that other processes who want to access to the resource with a shared lock can have the access, but a concurrent process who want to access the semaphore with an exclusive lock won't be able to. * explanation on locks here : here locks are registered in kernel memory, where they are defined by a pthread_mutex_t and an identifier name, which corresponds most of the time to a mix of the register associated name and processus (but it's up to the user). The iterations like searching a lock are done on this id name. */ |